相關(guān)習(xí)題
 0  230719  230727  230733  230737  230743  230745  230749  230755  230757  230763  230769  230773  230775  230779  230785  230787  230793  230797  230799  230803  230805  230809  230811  230813  230814  230815  230817  230818  230819  230821  230823  230827  230829  230833  230835  230839  230845  230847  230853  230857  230859  230863  230869  230875  230877  230883  230887  230889  230895  230899  230905  230913  266669 

科目: 來源: 題型:解答題

1.社會調(diào)查表明,家庭月收入x(單位:千元)與月儲蓄y(單位:千元)具有線性相關(guān)關(guān)系,隨機(jī)抽取了10個家庭,獲得第i個家庭的月收入與月儲蓄數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=60,$\sum_{i=1}^{10}$yi=15,$\sum_{i=1}^{10}$xiyi=180,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=540.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若某家庭月收入為5千元,預(yù)測該家庭的月儲蓄.
參考公式:線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.某社會研究機(jī)構(gòu)為了了解高中學(xué)生在吃零食這方面的生活習(xí)慣,隨機(jī)調(diào)查了120名男生和80名女生,這200名學(xué)生中共有140名愛吃零食,其中包括80名男生,60名女生.請完成如表的列聯(lián)表,并判斷是否有90%的把握認(rèn)為高中生是否愛吃零食的生活習(xí)慣與性別有關(guān)?
  女生 男生 總計
 愛吃零食   
 不愛吃零食   
 總計   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
 P(K2≥k0 0.10 0.050 0.010
 k0 2.706 3.841 6.635

查看答案和解析>>

科目: 來源: 題型:選擇題

19.函數(shù)f(x)=ex-$\frac{1}{{e}^{x}}$,若實數(shù)m滿足f(m2)+f(3m-4)<0,則m的取值范圍是( 。
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

18.log2(C${\;}_{2015}^{0}$+C${\;}_{2015}^{1}$+…+C${\;}_{2015}^{1007}$)的值為( 。
A.1007B.1008C.2014D.2015

查看答案和解析>>

科目: 來源: 題型:選擇題

17.某校組織高一、高二年級書法比賽,高一、高二年級參賽人數(shù)分別占60%、40%;并且高一年級獲獎人數(shù)占本年級參賽人數(shù)的$\frac{1}{6}$,高二年級獲獎人數(shù)占本年級參賽人數(shù)的$\frac{1}{8}$.現(xiàn)從所有參賽學(xué)生中任意抽取一人,記事件A表示該學(xué)生來自高一,事件B表示該學(xué)生獲獎,則P(B|$\overline{A}$)的值為( 。
A.$\frac{1}{8}$B.$\frac{2}{15}$C.$\frac{5}{36}$D.$\frac{3}{20}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若正△ABC的邊長為a,其內(nèi)一點P到三邊距離分別為x,y,z,則S△PAB+S△PAC+S△PBC=S△ABC,于是$\frac{1}{2}$ax+$\frac{1}{2}$ay+$\frac{1}{2}$az=S△ABC,x+y+z=$\frac{2{S}_{△ABC}}{a}$.類比推理,求解下面的問題.正四面體棱長為2,其內(nèi)一點M到各個面的距離分別為d1,d2,d3,d4,則d1+d2+d3+d4的值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.一個口袋中裝有3個白球和3個黑球,獨立事件是( 。
A.第一次摸出的是白球與第一次摸出的是黑球
B.摸出后不放回,第一次摸出的是白球,第二次摸出的是黑球
C.摸出后放回,第一次摸出的是白球,第二次摸出的是黑球
D.一次摸兩個球,共摸兩次,第一次摸出顏色相同的球與第一次摸出顏色不同的球

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知x∈R,試比較2x2-3x+3與$\frac{2}{{2}^{x}+{2}^{-x}}$的大。

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知復(fù)數(shù)z=x+yi(x,y∈R),滿足|z|=$\sqrt{2}$,z2的虛部是2,z對應(yīng)的點A在第一象限.
(1)求z;
(2)若z,z2,z-z2在復(fù)平面上對應(yīng)點分別為A,B,C.求cos∠ABC.

查看答案和解析>>

科目: 來源: 題型:填空題

12.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-4}$的單調(diào)遞增區(qū)間為(-∞,0].

查看答案和解析>>

同步練習(xí)冊答案