相關(guān)習(xí)題
 0  231196  231204  231210  231214  231220  231222  231226  231232  231234  231240  231246  231250  231252  231256  231262  231264  231270  231274  231276  231280  231282  231286  231288  231290  231291  231292  231294  231295  231296  231298  231300  231304  231306  231310  231312  231316  231322  231324  231330  231334  231336  231340  231346  231352  231354  231360  231364  231366  231372  231376  231382  231390  266669 

科目: 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\frac{x}{{{e^{2x}}}}$,(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)求f(x)的單調(diào)區(qū)間及最大值;
(Ⅱ)設(shè)g(x)=$\frac{x}{{{e^{2x}}}}$+m,若g(x)在點(diǎn)(-$\frac{1}{2}$,g(-$\frac{1}{2}})}$)處的切線過點(diǎn)(1,3e),求m的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)-x有兩個極值點(diǎn)x1,x2,求證:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.函數(shù)f(x)=|x|-ax-1僅有一個負(fù)零點(diǎn),則a的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在一個港口,相鄰兩次高潮發(fā)生的時間相距12h,低潮時水深為9m,高潮時水深為15m.每天潮漲潮落時,該港口水的深度y(m)關(guān)于時間t(h)的函數(shù)圖象可以近似地看成函數(shù)y=Asin(ωt+φ)+k的圖象,其中0≤t≤24,且t=3時漲潮到一次高潮,則該函數(shù)的解析式可以是(  )
A.$y=3sin\frac{π}{6}t+12$B.$y=-3sin\frac{π}{6}t+12$C.$y=3sin\frac{π}{12}t+12$D.$y=3cos\frac{π}{12}t+12$

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-alnx+1(a∈R).
(1)若函數(shù)f(x)在[1,2]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若-2≤a<0,對任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求m的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+ax2+bx+5,當(dāng)x=-2時,f(x)有極值為13.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)在[-3,0]上的最值.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.今天為星期四,則今天后的第22016天是( 。
A.星期 二B.星期三C.星期四D.星期五

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知集合A={y|y=x2-2x+2},B={(x,y)|y=x2-2x+2},則下列各式中正確的個數(shù)是( 。
(1)A=B;(2)A?B;(3)A∈B;(4)A?B;(5)B∈A.
A.0B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知圓C的周長被y軸平分,且經(jīng)過點(diǎn)A($\sqrt{3}$,0),B(0,3).
(1)求圓C的方程;
(2)過原點(diǎn)O作兩條直線l1:y=k1x交圓C于點(diǎn)E(x1,y1)、F(x2,y2),作直線l2:y=k2x交圓C于點(diǎn)G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),設(shè)EH交x軸于點(diǎn)Q,GF交x軸于點(diǎn)R(如圖)
①求證:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求證:|OQ|=|OR|.(證明過程不考慮EH或GF垂直于x軸的情形)

查看答案和解析>>

科目: 來源: 題型:解答題

12.點(diǎn)P(x,y)在三角形ABC的邊界和內(nèi)部運(yùn)動,其中A(1,0),B(2,1),C(4,4),已知m>0,n>0.
(1)求z=2x-y的最小值M和最大值N;
(2)若m+n=M,求$\frac{4}{m}$+$\frac{9}{n}$的最小值,并求此時的m,n的值;
(3)若m+n+mn=N,求mn的最大值和m+n的最小值.

查看答案和解析>>

同步練習(xí)冊答案