相關(guān)習(xí)題
 0  231992  232000  232006  232010  232016  232018  232022  232028  232030  232036  232042  232046  232048  232052  232058  232060  232066  232070  232072  232076  232078  232082  232084  232086  232087  232088  232090  232091  232092  232094  232096  232100  232102  232106  232108  232112  232118  232120  232126  232130  232132  232136  232142  232148  232150  232156  232160  232162  232168  232172  232178  232186  266669 

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個不等實根x1,x2,求實數(shù)k的取值范圍;
(3)在(2)的條件下,求證:x1+x2>2.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個不等實根x1,x2,求實數(shù)k的取值范圍;
(3)在(2)的條件下,若x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x0)<0.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{{\sqrt{3}}}{2}$,右焦點為F.
(1)求橢圓C的方程;
(2)直線l與橢圓C相切于點P(不為橢圓C的左、右頂點),直線l與直線x=2交于點A,直線l與直線x=-2交于點B,請問∠AFB是否為定值?若不是,請說明理由;若是,請證明.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知函數(shù)f(x)=2x+1,若f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*.則f5(x)的表達(dá)式為32x+31.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知關(guān)于x的方程ax2+x+3a+1=0,在(0,3]上有根,則實數(shù)a的取值范圍為(  )
A.(-$\frac{1}{2}$,-$\frac{1}{3}}$]B.[-$\frac{1}{2}$,-$\frac{1}{3}}$]C.[-3,-2]D.(-3,-2]

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,AC是圓O的直徑,ABCD是圓內(nèi)接四邊形,BE⊥DE于點E,且BE與圓O相切于點B.
(1)求證:CB平分∠ACE;
(2)若AB=6,BE=3,求AD的長.

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)L為曲線C:y=$\frac{lnx}{x}$在點(1,0)處的切線.
(1)求L的方程;
(2)證明:曲線C不可能在直線L的上方.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{0,x=0時}\\{|x+\frac{2}{x}|,x≠0時}\end{array}\right.$,則有關(guān)x的方程f2(x)+bf(x)+c=0有5個不等實根的充分條件是(  )
A.b<-2$\sqrt{2}$且c>0B.b<-2$\sqrt{2}$且c<0C.b<-2$\sqrt{2}$且c=0D.b≥-2$\sqrt{2}$且c=0

查看答案和解析>>

科目: 來源: 題型:解答題

18.一家新技術(shù)公司計劃研制一個名片管理系統(tǒng),希望系統(tǒng)能夠具備以下功能:
(1)用戶管理:能修改密碼,顯示用戶信息,修改用戶信息.
(2)用戶登錄.
(3)名片管理:能夠?qū)γM行刪除、添加、修改、查詢.
(4)出錯信息處理.
請根據(jù)這些要求畫出該系統(tǒng)的結(jié)構(gòu)圖.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知三個不等式①|(zhì)2x-4|<5-x;②$\frac{x+2}{{x}^{2}-3x+2}$≥1;③2x2+mx-1<0.
(1)若同時滿足①、②的x的值以滿足③,求實數(shù)m的取值范圍;
(2)若不等式③的解集非空也滿足③的x至少滿足①和②中的一個,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案