5.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,若x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x0)<0.

分析 (1)求導(dǎo)數(shù),利用函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x,求出a,b,即可求函數(shù)f(x)的解析式;
(2)確定函數(shù)f(x)的最大值為f(1)=$\frac{1}{e}$,x→+∞,f(x)→0,x→-∞,x<0,利用關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,即可求實(shí)數(shù)k的取值范圍;
(3)不妨設(shè)0<x1<1<x2,先證明f(1+t)>f(1-t),對t∈(0,1)恒成立,再利用x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,即可證明結(jié)論.

解答 (1)解:由題意,f′(x)=$\frac{a-ax}{{e}^{x}}$,
∵函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x,
∴f(0)=b=0,f′(0)=a=1,
∴f(x)=$\frac{x}{{e}^{x}}$;
(2)解:由(1)f′(x)=$\frac{1-x}{{e}^{x}}$,x<1,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
∴函數(shù)f(x)的最大值為f(1)=$\frac{1}{e}$,
∵x→+∞,f(x)→0,x→-∞,x<0,關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,
∴0<k<$\frac{1}{e}$;
(3)證明:不妨設(shè)0<x1<1<x2,先證明f(1+t)>f(1-t),對t∈(0,1)恒成立,
只要證明(1+t)e-(1+t)>(1-t)e-(1-t),
只要證明ln(1+t)-ln(1-t)-2t>0.
令g(t)=ln(1+t)-ln(1-t)-2t,t∈(0,1)
則g′(t)=$\frac{2{t}^{2}}{1-{t}^{2}}$>0,
∴g(t)在(0,1)上單調(diào)遞增,
∴g(t)>g(0)=0.
∵0<x1<1<x2
∴2-x1>1,
∴f(x2)=f(x1)<f(2-x1),
∵x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
∴x2>2-x1,
∴x1+x2>2,
∴x0=$\frac{{{x_1}+{x_2}}}{2}$>1,∴f'(x0)<0.

點(diǎn)評 本小題主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想、數(shù)形結(jié)合思想等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)袋中裝有大小相同的5個(gè)白球和3個(gè)紅球,現(xiàn)在不放回的取2次球,每次取出一個(gè)球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則事件A發(fā)生的條件下事件B發(fā)生的概率是( 。
A.$\frac{4}{7}$B.$\frac{5}{16}$C.$\frac{5}{8}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.(1-x)4(1-$\sqrt{x}$)3的展開式中x2的系數(shù)是( 。
A.-3B.-6C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}與{bn}滿足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1=λ<0,bnn(n∈N*),求λ的取值范圍,使得{an}有最大值M與最小值m,且$\frac{M}{m}$∈(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)L為曲線C:y=$\frac{lnx}{x}$在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:曲線C不可能在直線L的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}的S3=7,若4a1,2a2,a3成等差數(shù)列,則a1=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)是定義在R上的函數(shù),若函數(shù)y=f(x+1)為偶函數(shù),且當(dāng)x≥1時(shí),有f(x)=1-2x,設(shè)a=f(${\frac{3}{2}}$),b=f(${\frac{2}{3}}$),c=f(${\frac{1}{3}}$),則( 。
A.c<b<aB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)證明:當(dāng)x>1時(shí),(x+1)(x+e-x)f(x)>2(1+$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},則M∪N=( 。
A.[0,3)B.[0,3]C.[1,2)D.[1,2]

查看答案和解析>>

同步練習(xí)冊答案