15.一個(gè)袋中裝有大小相同的5個(gè)白球和3個(gè)紅球,現(xiàn)在不放回的取2次球,每次取出一個(gè)球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則事件A發(fā)生的條件下事件B發(fā)生的概率是( 。
A.$\frac{4}{7}$B.$\frac{5}{16}$C.$\frac{5}{8}$D.$\frac{5}{14}$

分析 根據(jù)題意,利用條件概率計(jì)算公式求出事件A發(fā)生的條件下事件B發(fā)生的概率即可.

解答 解:一個(gè)口袋中裝有5個(gè)白球,3個(gè)紅球,每次從袋中隨機(jī)摸出一個(gè)球,不放回地摸2次,
A表示“第一次拿出的是白球”,B表示“第二次拿出的是白球”,
則P(A)=$\frac{5}{8}$,P(AB)=$\frac{5}{8}$×$\frac{4}{7}$=$\frac{5}{14}$;
在摸出的第一個(gè)是白球的條件下,摸出的第二個(gè)球是白球的概率是:
p(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{5}{14}}{\frac{5}{8}}$=$\frac{4}{7}$.
故選:D.

點(diǎn)評(píng) 本題考查了條件概率的計(jì)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)已知函數(shù)f(x)=x2-(2a+1)x+alnx.當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)已知函數(shù)f(x)=$\frac{1}{2}$x3-$\frac{3}{2}$x,求過(guò)點(diǎn)(2,1)且與函數(shù)f(x)圖象相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx+$\frac{a}{x-1}$(a為常數(shù)),若函數(shù)y=f(x)在(e,+∞)內(nèi)有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S的值為(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.過(guò)點(diǎn)M(1,1)作斜率為-$\frac{1}{4}$的直線與橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),相交于A、B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則|$\overrightarrow a$-$\overrightarrow b$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.《九章算術(shù)》中,將底面是直角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”的表面積為(  )
A.4+2$\sqrt{2}$B.2C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知f(x)=(x2-a)ex,若a=3,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,若x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x0)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案