4.已知f(x)=(x2-a)ex,若a=3,求f(x)的單調(diào)區(qū)間和極值.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:∵a=3,∴f(x)=(x2-3)ex,
f'(x)=(x2+2x-3)ex,
令f′(x)=0,解得:x=-3或1;
當(dāng)x∈(-∞,-3)∪(1,+∞)時(shí)f'(x)>0,
x∈(-3,1)時(shí)f'(x)<0,
∴f(x)的增區(qū)間為(-∞,-3],[1,+∞),減區(qū)間為[-3,1],
∴f(x)的極大值為f(-3)=6e-3,極小值為f(1)=-2e.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\frac{{{x^2}+3x+1}}{x}$,(x>0)的最小值為( 。
A.2B.4C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)袋中裝有大小相同的5個(gè)白球和3個(gè)紅球,現(xiàn)在不放回的取2次球,每次取出一個(gè)球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則事件A發(fā)生的條件下事件B發(fā)生的概率是( 。
A.$\frac{4}{7}$B.$\frac{5}{16}$C.$\frac{5}{8}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若cos(π-A+B)+2sinAsinB<0,那么△ABC三邊長(zhǎng)a、b、c之間滿足的關(guān)系是( 。
A.a2+b2<c2B.b2+c2<a2C.2ab>c2D.2bc>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC中,∠C=90°,點(diǎn)M在邊BC上,且滿足BC=3BM,若sin∠BAM=$\frac{1}{5}$,則sin∠BAC=(  )
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;  
(2)若A⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.(1-x)4(1-$\sqrt{x}$)3的展開式中x2的系數(shù)是( 。
A.-3B.-6C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}與{bn}滿足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1=λ<0,bnn(n∈N*),求λ的取值范圍,使得{an}有最大值M與最小值m,且$\frac{M}{m}$∈(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)證明:當(dāng)x>1時(shí),(x+1)(x+e-x)f(x)>2(1+$\frac{1}{e}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案