19.△ABC中,∠C=90°,點(diǎn)M在邊BC上,且滿足BC=3BM,若sin∠BAM=$\frac{1}{5}$,則sin∠BAC=(  )
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 設(shè)BM=1,AC=h,利用兩角和差的正切公式計(jì)算tan∠BAM,列出方程解出AC,即可求出AB,得出sin∠BAC.

解答 解:設(shè)∠BAM=α,∠CAM=β,BC=3BM=3,AC=h.
則tanβ=$\frac{2}{h}$,tan(α+β)=$\frac{3}{h}$,
∴tanα=$\frac{\frac{3}{h}-\frac{2}{h}}{1+\frac{6}{{h}^{2}}}$=$\frac{h}{{h}^{2}+6}$.
又sinα=$\frac{1}{5}$,∴cosα=$\frac{2\sqrt{6}}{5}$,∴tanα=$\frac{1}{2\sqrt{6}}$.
∴$\frac{h}{{h}^{2}+6}=\frac{1}{2\sqrt{6}}$,解得h=$\sqrt{6}$.
∴AB=$\sqrt{{h}^{2}+9}$=$\sqrt{15}$.
∴sin∠BAC=$\frac{BC}{AB}$=$\frac{3}{\sqrt{15}}$=$\frac{\sqrt{15}}{5}$.
故選:A.

點(diǎn)評 本題考查了三角形中的幾何運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x3+x2-ax-4在R上無極值點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.$({-∞,-\frac{1}{3}})$B.$[{-\frac{1}{3},+∞})$C.$({-\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.過點(diǎn)M(1,1)作斜率為-$\frac{1}{4}$的直線與橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),相交于A、B兩點(diǎn),若M是線段AB的中點(diǎn),則橢圓C的離心率為(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《九章算術(shù)》中,將底面是直角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”的表面積為(  )
A.4+2$\sqrt{2}$B.2C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,在斜度一定的山坡上的一點(diǎn)A測得山頂上一建筑物頂端C對于山坡的斜度為15°,向山頂前進(jìn)100米后到達(dá)點(diǎn)B,又從點(diǎn)B測得斜度為45°,建筑物的高CD為50米.
(1)求BC長;
(2)求此山對于地平面的傾斜角θ(計(jì)算出函數(shù)值即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=(x2-a)ex,若a=3,求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式(x+2)3(x+3)4(x-1)<0的解集是( 。
A.-2<x<1B.-3<x<1C.-3<x<-2D.x>1或x<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,點(diǎn)A(0,-2)與橢圓右焦點(diǎn)F的連線的斜率為$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)O為坐標(biāo)原點(diǎn),過點(diǎn)A的直線l與橢圓C相交于P、Q兩點(diǎn),當(dāng)△OPQ的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=$\frac{1}{3}$x${\;}^{3}+\frac{1}{2}$(b-1)x2+cx(b,c為常數(shù)),若f(x)在x=1和x=3處取得極值,則b=5,c=3.

查看答案和解析>>

同步練習(xí)冊答案