相關(guān)習(xí)題
 0  232050  232058  232064  232068  232074  232076  232080  232086  232088  232094  232100  232104  232106  232110  232116  232118  232124  232128  232130  232134  232136  232140  232142  232144  232145  232146  232148  232149  232150  232152  232154  232158  232160  232164  232166  232170  232176  232178  232184  232188  232190  232194  232200  232206  232208  232214  232218  232220  232226  232230  232236  232244  266669 

科目: 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),0<x≤2}\\{1-{2}^{x},-2≤x≤0}\end{array}\right.$,若函數(shù)y=|f(x)|圖象與直線y=kx+k有3個交點,則實數(shù)k的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{2e}$)C.[$\frac{ln3}{3}$,$\frac{1}{2e}$)D.[$\frac{ln3}{3}$,$\frac{1}{e}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.將函數(shù)y=cos(2x-$\frac{π}{6}$)的圖象向左平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的解析式( 。
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

5.直線3x+4y-2=0與直線2x+y+2=0的交點坐標(biāo)是(  )
A.(2,2)B.(2,-2)C.(-2,2)D.(-2,-2)

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{3}}{2}$,已知點P(0,$\frac{3}{2}$)到橢圓C的右焦點F的距離是$\frac{\sqrt{57}}{2}$.設(shè)經(jīng)過點P且斜率存在的直線與橢圓C相交于A、B兩點,線段AB的中垂線與x軸相交于一點Q.
(Ⅰ)求橢圓C的標(biāo)準方程;
(Ⅱ)求點Q的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.“數(shù)列{an}為等比數(shù)列”是“an=3n(n∈N*)的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

2.在直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,已知點M的極坐標(biāo)為(2$\sqrt{2}$,$\frac{π}{4}$),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(1)直線l過M且與曲線C相切,求直線l的極坐標(biāo)方程;
(2)點N與點M關(guān)于y軸對稱,求曲線C上的點到點N的距離的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若數(shù)列{an}是等比數(shù)列,Sn是其前n項和,且Sn=2n-a,則a=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.函數(shù)f(x)=mx2-m(m-1)x+1在[0,+∞)上是增函數(shù),則實數(shù)m的取值范圍是(  )
A.m≤1B.0<m≤1C.0≤m≤1D.m≥1

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知f(x)=x(x-1)(x-2)…(x-5),則f′(0)=-120.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知p為拋物線y2=2x的一點,若B(1,1),則|PB|+|PF|的最小值是$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案