相關習題
 0  232589  232597  232603  232607  232613  232615  232619  232625  232627  232633  232639  232643  232645  232649  232655  232657  232663  232667  232669  232673  232675  232679  232681  232683  232684  232685  232687  232688  232689  232691  232693  232697  232699  232703  232705  232709  232715  232717  232723  232727  232729  232733  232739  232745  232747  232753  232757  232759  232765  232769  232775  232783  266669 

科目: 來源: 題型:填空題

6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個“金魚”圖需要火柴的根數(shù)為32.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)對任意實數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負數(shù),且f(x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(Ⅰ)求f(-1),f(2.5)的值;
(Ⅱ)求f(x)在[-3,3]上的表達式;
(Ⅲ)求f(x)在[-3,3]上的最值.

查看答案和解析>>

科目: 來源: 題型:填空題

4.一組數(shù)據(jù)的方差是5,將這組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再加3,所得到的一組數(shù)據(jù)的方差是20.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=x(2+x).
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并寫出單調區(qū)間.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知θ∈(0,$\frac{π}{2}$),則y═$\frac{1}{si{n}^{2}θ}+\frac{9}{co{s}^{2}θ}$的最小值為( 。
A.6B.10C.12D.16

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$,若目標函數(shù)z=ax+y(其中a為常數(shù))僅在點($\frac{1}{2}$,$\frac{1}{2}$)處取得最大值,則實數(shù)a的取值范圍是(  )
A.(-2,2)B.(0,1)C.(-1,1)D.(-1,0)

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設a∈{-1,1,$\frac{1}{3}$,$\frac{2}{3}$},則使函數(shù)y=xa的定義域為R且為奇函數(shù)的所有a的值為( 。
A.$-1,\frac{1}{3}$B.$1,\frac{2}{3}$C.$1,\frac{1}{3}$D.$1,\frac{2}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

19.ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.
(1)求角B的大小;
(2)若BD為AC邊上的中線,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知某幾何體的正視圖和側視圖均如圖所示,給出下列5個圖形:

其中可以作為該幾何體的俯視圖的圖形個數(shù)是4.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知定義在R上的函數(shù)f(x)同時滿足以下三個條件
(1)f(x)+f(2-x)=0,
(2)f(x)=(-2-x)
(3)f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,0]}\\{1-x,x∈(0,1]}\end{array}\right.$
則函數(shù)f(x)與函數(shù)g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$的圖象在區(qū)間[-3,3]上公共點個數(shù)為6個.

查看答案和解析>>

同步練習冊答案