相關(guān)習(xí)題
 0  232894  232902  232908  232912  232918  232920  232924  232930  232932  232938  232944  232948  232950  232954  232960  232962  232968  232972  232974  232978  232980  232984  232986  232988  232989  232990  232992  232993  232994  232996  232998  233002  233004  233008  233010  233014  233020  233022  233028  233032  233034  233038  233044  233050  233052  233058  233062  233064  233070  233074  233080  233088  266669 

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3ax2-9a2x+a3
(1)設(shè)a=1,求函數(shù)f(x)的極值;
(2)若$\frac{1}{4}$<a≤1,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}-1\;,\;x≤0}\\{-{x^2}+x\;,\;x>0}\end{array}}$,則函數(shù)g(x)=f(logax)(其中0<a<1)的單調(diào)遞減區(qū)間是(  )
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.[$\sqrt{a}$,1)D.(0,$\sqrt{a}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若R上的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱,且當(dāng)0<x≤1時(shí),f(x)=log2x,則方程f(x)=f(0)+$\frac{1}{4}$在區(qū)間(2014,2016)內(nèi)的所有實(shí)數(shù)根之和為( 。
A.4028B.4030C.4032D.4034

查看答案和解析>>

科目: 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同時(shí)滿足條件:
①對(duì)于任意的實(shí)數(shù)x,f(x)和g(x)的函數(shù)值至少有一個(gè)小于0;
②在區(qū)間(-∞,-4)內(nèi)存在實(shí)數(shù)x,使得f(x)g(x)<0成立;
則實(shí)數(shù)m的取值范圍是(-4,-2).

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n(n∈N*)上”為事件Cn,若事件Cn發(fā)生的概率最大,則n的取值為3,4.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.在四邊形ABCD中,任意兩頂點(diǎn)之間恰做一個(gè)向量,做出所有的向量,其中3邊向量之和為零向量的三角形稱為“零三角形”,設(shè)以這4個(gè)頂點(diǎn)確定的三角形的個(gè)數(shù)為n,設(shè)在所有不同情況中的“零三角形”個(gè)數(shù)的最大值為m,則$\frac{m}{n}$等于(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

1.在△ABC中,已知a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,則c=( 。
A.1B.2C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

20.如果函數(shù)f(x)=-x2+2x+c的最大值為3,則實(shí)數(shù)c=2.

查看答案和解析>>

科目: 來源: 題型:填空題

19.?dāng)?shù)列{an}中a4=32,an+1-an=8,則a1=8.

查看答案和解析>>

科目: 來源: 題型:填空題

18.在等差數(shù)列{an}中,公差d≠0,且a1,a3,a9成等比數(shù)列,則$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{{a}_{2}+{a}_{4}+{a}_{10}}$=$\frac{13}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案