相關(guān)習(xí)題
 0  235411  235419  235425  235429  235435  235437  235441  235447  235449  235455  235461  235465  235467  235471  235477  235479  235485  235489  235491  235495  235497  235501  235503  235505  235506  235507  235509  235510  235511  235513  235515  235519  235521  235525  235527  235531  235537  235539  235545  235549  235551  235555  235561  235567  235569  235575  235579  235581  235587  235591  235597  235605  266669 

科目: 來源: 題型:選擇題

17.點(diǎn)P從點(diǎn)O出發(fā),按逆時(shí)針方向沿周長為l的正方形運(yùn)動(dòng)一周,記O,P兩點(diǎn)連線的距離y與點(diǎn)P走過的路程x為函數(shù)f(x),則y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則關(guān)于f(x)的說法正確的是( 。
A.對稱軸方程是x=$\frac{π}{3}$+2kπ(k∈Z)B.φ=-$\frac{π}{6}$
C.最小正周期為πD.在區(qū)間($\frac{π}{2}$,$\frac{7π}{6}$)上單調(diào)遞減

查看答案和解析>>

科目: 來源: 題型:選擇題

15.下列選項(xiàng)中,存在實(shí)數(shù)m使得定義域和值域都是(m,+∞)的函數(shù)是( 。
A.y=exB.y=lnxC.y=x2D.y=$\frac{x-1}{x+1}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若sinα+$\sqrt{3}$cosα=2,則tan(π+α)=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),則下列結(jié)論中一定正確的是( 。
A.函數(shù)f(x)+x2是奇函數(shù)B.函數(shù)f(x)+|x|是偶函數(shù)
C.函數(shù)x2f(x)是奇函數(shù)D.函數(shù)|x|f(x)是偶函數(shù)

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)a=3e,b=πe,c=π3,其中e=2.71828…為自然對數(shù)的底數(shù),則a,b,c的大小關(guān)系是( 。
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)y=$\frac{1}{\sqrt{1-x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1]B.(-∞,1)C.(-∞,1]D.(1,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

10.下列命題中假命題是( 。
A.?x0∈R,lnx0<0B.?x∈(-∞,0),ex>0
C.?x>0,5x>3xD.?x0∈(0,+∞),2<sinx0+cosx0

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知復(fù)數(shù)z滿足$\frac{z}{1+i}=1-i$(i為純虛數(shù)),那么復(fù)數(shù)z=( 。
A.1B.2C.iD.2i

查看答案和解析>>

科目: 來源: 題型:解答題

8.在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B兩點(diǎn)的極坐標(biāo)為$({1,\frac{π}{2}}),({1,π})$.
(1)求圓C的普通方程和直線L的直角坐標(biāo)方程;
(2)點(diǎn)P是圓C上任意一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案