相關(guān)習題
 0  235527  235535  235541  235545  235551  235553  235557  235563  235565  235571  235577  235581  235583  235587  235593  235595  235601  235605  235607  235611  235613  235617  235619  235621  235622  235623  235625  235626  235627  235629  235631  235635  235637  235641  235643  235647  235653  235655  235661  235665  235667  235671  235677  235683  235685  235691  235695  235697  235703  235707  235713  235721  266669 

科目: 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,0<λ<$\frac{1}{e}$,e是自然對數(shù)的底數(shù)
(Ⅰ)求證:函數(shù)f(x)有兩個極值點;
(Ⅱ)若-e≤a<0,求證:函數(shù)f(x)有唯一零點.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.一直線l與平行四邊形ABCD中的兩邊AB、AD分別交于E、F,且交其對角線AC于K,若$\overrightarrow{AB}$=2$\overrightarrow{AE}$,$\overrightarrow{AD}$=3$\overrightarrow{AF}$,$\overrightarrow{AC}$=λ$\overrightarrow{AK}$(λ∈R),則λ=( 。
A.2B.$\frac{5}{2}$C.3D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

1.已知全集為R,集合M={-1,1,2,4},N={x|x2-2x≥3},則M∩(∁RN)=( 。
A.{-1,2,2}B.{1,2}C.{4}D.{x|-1≤x≤2}

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知f(x)=$\left\{\begin{array}{l}{{2}^{x-1}(x≥1)}\\{3x-2(x<1)}\end{array}\right.$,若對任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{3}$)+$\frac{1}{2}$>0恒成立,整數(shù)λ的最小值為1.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知:θ為第一象限角,$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{sinθ+3cosθ}{sinθ-cosθ}$的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=1,求sinθ+cosθ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關(guān)系有經(jīng)驗公式P=$\frac{1}{3}$m+65,Q=76+4$\sqrt{m}$,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設(shè)對乙產(chǎn)品投入資金x萬元,求總利潤y(萬元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?

查看答案和解析>>

科目: 來源: 題型:填空題

17.在平面直角坐標系xOy中,向量$\overrightarrow{a}$=(x,y)所對應(yīng)點位于第一象限,且在向量$\overrightarrow$=(1,1)方向上的投影為$\frac{\sqrt{2}}{2}$,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知△ABC的面積是4,∠BAC=120°,點P滿足$\overrightarrow{BP}$=3$\overrightarrow{PC}$,過點P作邊AB,AC所在直線的垂線,垂足分別是M,N.則$\overrightarrow{PM}$•$\overrightarrow{PN}$=$\frac{3\sqrt{3}}{8}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-…+\frac{{{x^{2017}}}}{2017}$,設(shè)F(x)=f(x+4),且F(x)的零點均在區(qū)間(a,b)內(nèi),其中a,b∈Z,a<b,則F(x)>0的最小整數(shù)解為(  )
A.-1B.0C.-5D.-4

查看答案和解析>>

科目: 來源: 題型:解答題

14.將含有3n個正整數(shù)的集合M分成元素個數(shù)相等且兩兩沒有公共元素的三個集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,求x的值;
(2)對于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,求元素乘積最小的集合C.

查看答案和解析>>

同步練習冊答案