相關習題
 0  235609  235617  235623  235627  235633  235635  235639  235645  235647  235653  235659  235663  235665  235669  235675  235677  235683  235687  235689  235693  235695  235699  235701  235703  235704  235705  235707  235708  235709  235711  235713  235717  235719  235723  235725  235729  235735  235737  235743  235747  235749  235753  235759  235765  235767  235773  235777  235779  235785  235789  235795  235803  266669 

科目: 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,平面ABCD⊥平面SAB,側面SAB為等邊三角形,底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.
(1)求證:AB⊥DS;
(2)求平面SAD與平面SBC所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意$n∈{N^*},6{S_n}={a_n}^2+3{a_n}+2$.
(1)求數(shù)列{an}的通項公式;
(2)記${b_n}=\frac{{2{S_n}}}{3n-1}•{2^n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,且2csinC=(2b+a)sinB+(2a-3b)sinA.
(1)求角C的大小;
(2)若c=4,求a+b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知點F為拋物線y2=2px(p>0)的焦點,點M(2,m)在拋物線E上,且|MF|=3.
(1)求拋物線E的方程;
(2)過x軸正半軸上一點N(a,0)的直線與拋物線E交于A,B兩點,若OA⊥OB,求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.設命題p:“?x∈R,x2+2x>m”;命題q:“?x0∈R,使${x_0}^2+2m{x_0}+2-m≤0$”.如果命題p∨q為真,命題p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

18.設F1,F(xiàn)2分別是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點,A為雙曲線的左頂點,以線段F1,F(xiàn)2為直徑的圓O與雙曲線的一個交點為P,與y軸交于B,D兩點,且與雙曲線的一條漸近線交于M,N兩點,則下列命題正確的是②③④.(寫出所有正確的命題編號)
①線段BD是雙曲線的虛軸;
②△PF1F2的面積為b2;
③若∠MAN=120°,則雙曲線C的離心率為$\frac{{\sqrt{21}}}{3}$;
④△PF1F2的內切圓的圓心到y(tǒng)軸的距離為a.

查看答案和解析>>

科目: 來源: 題型:填空題

17.在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,若E為AB的中點,則點E到面ACD1的距離是$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.若實數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≤0\end{array}\right.$,則$\frac{y-1}{x+2}$的取值范圍為[$-\frac{1}{2}$,$\frac{1}{4}$].

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知命題“若{an}是常數(shù)列,則{an}是等差數(shù)列”,在其逆命題、否命題和逆否命題中,假命題的個數(shù)是2.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.過拋物線y2=2px(p>0)的焦點F作兩條相互垂直的射線,分別與拋物線相交于點M,N,過弦MN的中點P作拋物線準線的垂線PQ,垂足為Q,則$\frac{{|{PQ}|}}{{|{MN}|}}$的最大值為(  )
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習冊答案