相關(guān)習(xí)題
 0  235672  235680  235686  235690  235696  235698  235702  235708  235710  235716  235722  235726  235728  235732  235738  235740  235746  235750  235752  235756  235758  235762  235764  235766  235767  235768  235770  235771  235772  235774  235776  235780  235782  235786  235788  235792  235798  235800  235806  235810  235812  235816  235822  235828  235830  235836  235840  235842  235848  235852  235858  235866  266669 

科目: 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$右焦點(diǎn)到漸近線的距離為( 。
A.3B.4C.5D.$\frac{12}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設(shè)p:x<2,q:-2<x<2,則p是q成立的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知△ABC是等邊三角形,D在BC的延長(zhǎng)線上,且CD=2,${S_{△ABD}}=6\sqrt{3}$.
(Ⅰ)求AB的長(zhǎng);
(Ⅱ)求sin∠CAD的值.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,在△ABC中,$AB=2AC,cosB=\frac{{2\sqrt{5}}}{5}$,點(diǎn)D在線段BC上.
(1)當(dāng)BD=AD時(shí),求$\frac{AD}{AC}$的值;
(2)若AD是∠A的平分線,$BC=\sqrt{5}$,求△ADC的面積.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知約束條件$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x≤a\end{array}\right.$,表示的可行域?yàn)镈,其中a>1,點(diǎn)(x0,y0)∈D,點(diǎn)(m,n)∈D若3x0-y0與$\frac{n+1}{m}$的最小值相等,則實(shí)數(shù)a等于2.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{64π}{3}+2\sqrt{3}$B.$\frac{56π}{3}+4\sqrt{3}$C.18πD.22π+4

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知$sin(α+\frac{π}{6})=\frac{1}{3}$,則$cos(2α-\frac{2π}{3})$的值是( 。
A.$\frac{5}{9}$B.$-\frac{8}{9}$C.$-\frac{1}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.右邊程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b的值分別為16,24,則輸出的a的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=2+tsinα\end{array}\right.(t$為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A、B,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分$\overline x$和樣本方差s2
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)由直方圖可以認(rèn)為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2
①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計(jì)總體的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),則P(μ-σ2),則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

同步練習(xí)冊(cè)答案