相關(guān)習(xí)題
 0  236205  236213  236219  236223  236229  236231  236235  236241  236243  236249  236255  236259  236261  236265  236271  236273  236279  236283  236285  236289  236291  236295  236297  236299  236300  236301  236303  236304  236305  236307  236309  236313  236315  236319  236321  236325  236331  236333  236339  236343  236345  236349  236355  236361  236363  236369  236373  236375  236381  236385  236391  236399  266669 

科目: 來源: 題型:解答題

13.已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對任意x∈|[-2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達式;
(2)若a,b,c為正整數(shù),函數(shù)f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有兩個不同零點,求a+b+c的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若雙曲線$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦點與橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$的焦點重合,則m的值為(  )
A.8B.2C.-2D.-8

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點(1,$\frac{3}{2}$),且離心率為$\frac{1}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C上異于其頂點的任一點P,作⊙O:x2+y2=3的兩條切線,切點分別為M,N,且直線MN在x軸,y軸上截距分別為m,n,證明:$\frac{1}{4{m}^{2}}$+$\frac{1}{3{n}^{2}}$為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知直線l的方程為2x+my-4m-4=0,m∈R,點P的坐標(biāo)為(-1,0).
(1)求證:直線l恒過定點,并求出定點坐標(biāo);
(2)設(shè)點Q為直線l上的動點,且PQ⊥l,求|PQ|的最大值;
(3)設(shè)點P在直線l上的射影為點A,點B的坐標(biāo)為($\frac{9}{2}$,5),求線段AB長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)的定義域為R,若存在常數(shù)T≠0,使得f(x)=Tf(x+T)對任意的x∈R成立,則稱函數(shù)f(x)是Ω函數(shù).
(Ⅰ)判斷函數(shù)f(x)=x,g(x)=sinπx是否是Ω函數(shù);(只需寫出結(jié)論)
(Ⅱ)說明:請在(i)、(ii)問中選擇一問解答即可,兩問都作答的按選擇(i)計分
(i)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是偶函數(shù),則f(x)是周期函數(shù);
(ii)求證:若函數(shù)f(x)是Ω函數(shù),且f(x)是奇函數(shù),則f(x)是周期函數(shù);
(Ⅲ)求證:當(dāng)a>1時,函數(shù)f(x)=ax一定是Ω函數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

8.在橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$內(nèi)有一點P(1,-1),F(xiàn)為橢圓右焦點,在橢圓上有一點M,使|MP|+|MF|的值最大,則這一最大值是4+$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知橢圓的一個焦點為F(0,1),離心率$e=\frac{1}{2}$,則橢圓的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在△ABC中,角A、B、C所對的邊長分別為a、b、c,$C=\frac{π}{3}$,a+b=1,則△ABC周長的最小值是( 。
A.$\frac{1}{2}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a2+a6=14.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足:$\frac{_{1}}{2}$+$\frac{_{2}}{{2}^{2}}$+$\frac{_{3}}{{2}^{3}}$+…+$\frac{_{n}}{{2}^{n}}$=an+n2+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

4.下列說法錯誤的是①.
①已知命題p為“?x∈[0,+∞),(log32)x≤1”,則非p是真命題
②若p∨q為假命題,則p,q均為假命題
③x>2是x>1充分不必要條件
④“全等三角形的面積相等”的否命題是假命題.

查看答案和解析>>

同步練習(xí)冊答案