相關(guān)習(xí)題
 0  236458  236466  236472  236476  236482  236484  236488  236494  236496  236502  236508  236512  236514  236518  236524  236526  236532  236536  236538  236542  236544  236548  236550  236552  236553  236554  236556  236557  236558  236560  236562  236566  236568  236572  236574  236578  236584  236586  236592  236596  236598  236602  236608  236614  236616  236622  236626  236628  236634  236638  236644  236652  266669 

科目: 來源: 題型:選擇題

1.已知三點(diǎn)P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐標(biāo)原點(diǎn),則|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=( 。
A.2B.4C.$2\sqrt{3}$D.12

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10,以極點(diǎn)為直角坐標(biāo)系原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系,曲線C1的參數(shù)方程為${C_1}:\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),.
(Ⅰ)求曲線C的直角坐標(biāo)方程和曲線C1的普通方程;
(Ⅱ)若點(diǎn)M在曲線C1上運(yùn)動(dòng),試求出M到曲線C的距離的最小值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=mx2-mx-1,g(x)=$\frac{f(x)}{x-1}$.
(1)若對(duì)任意x∈[1,3],不等式f(x)<5-m恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=-$\frac{1}{4}$時(shí),確定函數(shù)g(x)在區(qū)間(3,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D為BC的中點(diǎn).
(1)證明:A1B⊥平面AB1C;
(2)求直線A1D與平面AB1C所成的角的大小.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知三棱錐P-ABC的體積為10,其三視圖如圖所示,則這個(gè)三棱錐最長(zhǎng)的一條側(cè)棱長(zhǎng)等于$\sqrt{34}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx,且a>0
(1)若函數(shù)f(x)在[1,+∞)上是增函數(shù),求a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1時(shí)有極值0.
(1)求常數(shù) a,b的值;  
(2)求f(x)的單調(diào)區(qū)間.
(3)方程f(x)=c在區(qū)間[-4,0]上有三個(gè)不同的實(shí)根時(shí)實(shí)數(shù)c的范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

14.命題“若ac2≤bc2,則a≤b”的否命題是若ac2>bc2,則a>b,它是真命題(填“真”或“假”).

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知曲線C上的任一點(diǎn)到點(diǎn)F(0,1)的距離減去它到x軸的距離的差都是1.
(1)求曲線C的方程;
(2)設(shè)直線y=kx+m(m>0)與曲線C交于A,B兩點(diǎn),若對(duì)于任意k∈R都有$\overrightarrow{FA}$•$\overrightarrow{FB}$<0,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知x與y之間的一組數(shù)據(jù):
x01234
y13579
則y與x的線性回歸方程=x+必過點(diǎn)(2,5).

查看答案和解析>>

同步練習(xí)冊(cè)答案