相關(guān)習(xí)題
 0  236718  236726  236732  236736  236742  236744  236748  236754  236756  236762  236768  236772  236774  236778  236784  236786  236792  236796  236798  236802  236804  236808  236810  236812  236813  236814  236816  236817  236818  236820  236822  236826  236828  236832  236834  236838  236844  236846  236852  236856  236858  236862  236868  236874  236876  236882  236886  236888  236894  236898  236904  236912  266669 

科目: 來源: 題型:選擇題

12.下列說法正確的是( 。
A.若f(x)是奇函數(shù),則f(0)=0
B.若α是銳角,則2α是一象限或二象限角
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$
D.集合A={P|P⊆{1,2}}有4個元素

查看答案和解析>>

科目: 來源: 題型:選擇題

11.下列函數(shù)既是偶函數(shù),又在(0,+∞)上是增函數(shù)的是( 。
A.y=x-2B.$y={x^{\frac{1}{3}}}$C.y=2|x|D.y=|x-1|+|x+1|

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設(shè)全集U=R,$A=\left\{{x|\frac{x-3}{x-1}>0}\right\}$,B={x|x<2},則(∁UA)∩B=( 。
A.{x|1≤x<2}B.{x|1<x<2}C.{x|x<2}D.{x|x≥1}

查看答案和解析>>

科目: 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,動點P(x,y)與定點F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動點P的軌跡C的方程;
(2)過F作曲線C的不垂直于y軸的弦AB,M為AB的中點,直線OM與曲線C交于P,Q兩點,求四邊形APBQ面積的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知圓C:x2+y2-4x+3=0,
(1)求過M(3,2)點的圓的切線方程;
(2)直線l過點$N({\frac{3}{2},\frac{1}{2}})$且被圓C截得的弦長最短時,求直線l的方程;
(3)過點(1,0)的直線m與圓C交于不同的兩點A、B,線段AB的中點P的軌跡為C1,直線$y=k(x-\frac{5}{2})$與曲線C1只有一個交點,求k的值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知F1,F(xiàn)2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且$∠{F_1}P{F_2}=\frac{π}{2}$,橢圓和雙曲線的離心率分別為e1、e2,則$\frac{1}{{{e_1}^2}}+\frac{1}{{{e_2}^2}}$=2.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知圓O1:x2+y2=1與圓O2:(x+4)2+(y-a)2=25內(nèi)切,則常數(shù)a=0.

查看答案和解析>>

科目: 來源: 題型:填空題

5.某賽季甲、乙兩名籃球運動員每場比賽得分記錄用莖葉圖表示,從莖葉圖的分布情況看,乙運動員的發(fā)揮更穩(wěn)定.(填“甲”或“乙”)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.點M是拋物線y2=x上的點,點N是圓C:(x-3)2+y2=1上的點,則|MN|的最小值是(  )
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

查看答案和解析>>

科目: 來源: 題型:解答題

3.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,動點P(x,y)與定點F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動點P的軌跡C的方程;
(2)過F作曲線C的不垂直于y軸的弦AB,M為AB的中點,直線OM與${C_1}:{({x-4})^2}+{y^2}=32$交于P,Q兩點,求四邊形APBQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案