相關(guān)習(xí)題
 0  236838  236846  236852  236856  236862  236864  236868  236874  236876  236882  236888  236892  236894  236898  236904  236906  236912  236916  236918  236922  236924  236928  236930  236932  236933  236934  236936  236937  236938  236940  236942  236946  236948  236952  236954  236958  236964  236966  236972  236976  236978  236982  236988  236994  236996  237002  237006  237008  237014  237018  237024  237032  266669 

科目: 來源: 題型:填空題

11.已知點(diǎn)F是拋物線C:y2=4x的焦點(diǎn),點(diǎn)B在拋物線C上,A(5,4),當(dāng)△ABF周長最小時(shí),該三角形的面積為2.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖所示,已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn)O,過點(diǎn),M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(1)求證:以AB為直徑的圓過原點(diǎn)O;
(2)若坐標(biāo)原點(diǎn)關(guān)于直線l的對稱點(diǎn)P在拋物線C2上,直線l與橢圓C1相切,求橢圓C1的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+3x-9.
(1)若函數(shù)f(x)在x=-3時(shí)取得極值,求函數(shù)f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=1$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,那么$|2\overrightarrow a-\overrightarrow b|$=( 。
A.2B.3C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.sin20°cos10°-cos200°sin10°等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知拋物線x2=2py(p>0)的準(zhǔn)線經(jīng)過點(diǎn)(-1,-2),則拋物線的焦點(diǎn)坐標(biāo)為(  )
A.(0,2)B.(4,0)C.(0,4)D.(2,0)

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知以點(diǎn)A(m,$\frac{2}{m}$)(m∈R且m>0)為圓心的圓與x軸相交于O,B兩點(diǎn),與y軸相交于O,C兩點(diǎn),其中O為坐標(biāo)原點(diǎn).
(1)當(dāng)m=2時(shí),求圓A的標(biāo)準(zhǔn)方程;
(2)當(dāng)m變化時(shí),△OBC的面積是否為定值?若是,請求出該定值;若不是,請說明理由;
(3)設(shè)直線l:2x+y-4=0與圓A相交于P,Q兩點(diǎn),且|OP|=|OQ|,求|PQ|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.求圓心在l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為$2\sqrt{7}$的圓的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.圓錐過軸的截面是( 。
A.B.等腰三角形C.矩形D.拋物線

查看答案和解析>>

科目: 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為   ρsin2θ=2cosθ,過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{2}}{2}t}\\{y=-4-\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)求證:|PA|•|PB|=|AB|2

查看答案和解析>>

同步練習(xí)冊答案