相關(guān)習(xí)題
 0  237121  237129  237135  237139  237145  237147  237151  237157  237159  237165  237171  237175  237177  237181  237187  237189  237195  237199  237201  237205  237207  237211  237213  237215  237216  237217  237219  237220  237221  237223  237225  237229  237231  237235  237237  237241  237247  237249  237255  237259  237261  237265  237271  237277  237279  237285  237289  237291  237297  237301  237307  237315  266669 

科目: 來源: 題型:選擇題

8.已知集合A={x|x2-3x+2≤0},B={x|2x-3>0},則A∩B=( 。
A.$(1,\frac{3}{2})$B.$[1,\frac{3}{2})$C.$(\frac{3}{2},2]$D.$[\frac{3}{2},2)$

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,AB=1,$∠ABC=\frac{π}{3}$,E為PD中點,PA=1.
(I)求證:PB∥平面AEC;
(Ⅱ)在棱PC上是否存在點M,使得直線PC⊥平面BMD?若存在,求出點M的位置;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

6.如果直線ax+by+1=0被圓x2+y2=25截得的弦長等于8,那么$\frac{1}{{a}^{2}}$+$\frac{2}{^{2}}$的最小值等于27+$18\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.過正方體ABCD-A1B1C1D1的頂點A的平面α與平面CB1D1平行,設(shè)α∩平面ABCD=m,α∩平面ABB1A1=n,那么m,n所成角的余弦值等于( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知動圓過定點F(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心的軌跡C的方程;
(2)若點A(x0,y0)是直線x-y-4=0上的動點,過點A作曲線C的切線,切點記為M,N.
①求證:直線MN恒過定點;
②△AMN的面積S的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知函數(shù)f(x)對定義域內(nèi)R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時,其導(dǎo)數(shù)f'(x)滿足xf'(x)>2f'(x),若2<a<4,則( 。
A.$f({2^x})<f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]$B.$f(\frac{lna}{a})<f[{(\frac{lna}{a})^2}]<f({2^x})$
C.$f(\frac{lna}{a})<f({2^x})<f[{(\frac{lna}{a})^2}]$D.$f({2^x})<f[{(\frac{lna}{a})^2}]<f(\frac{lna}{a})$

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=(2x+b)ex,F(xiàn)(x)=bx-lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)min{m,n}表示m、n二者中較小的一個,已知函數(shù)f(x)=x2+8x+14,g(x)=min{($\frac{1}{2}$)x-2,log2(4x)}(x>0),若?x1∈[-5,a](a≥-4),?x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為(  )
A.-4B.-3C.-2D.0

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知圓C:x2+y2-ax+2y-a+4=0關(guān)于直線l1:ax+3y-5=0對稱,過點P(3,-2)的直線l2與圓C交于A,B兩點,則弦長|AB|的最小值為2$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.在長方體ABCD-A1B1C1D1中,AB=1,BC=3,AA1=2,E,F(xiàn)分別是下底面的棱A1B1,B1C1的中點,M是上底面的棱AD上一點,且AM=2,過M,E,F(xiàn)的平面與BA的延長線交于點N,則MN的長度為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{10}}}{3}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{{2\sqrt{10}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案