相關習題
 0  237445  237453  237459  237463  237469  237471  237475  237481  237483  237489  237495  237499  237501  237505  237511  237513  237519  237523  237525  237529  237531  237535  237537  237539  237540  237541  237543  237544  237545  237547  237549  237553  237555  237559  237561  237565  237571  237573  237579  237583  237585  237589  237595  237601  237603  237609  237613  237615  237621  237625  237631  237639  266669 

科目: 來源: 題型:選擇題

9.設向量$\overrightarrow{a}$=(4,2),$\overrightarrow$=(1,-1),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$等于( 。
A.2B.-2C.-12D.12

查看答案和解析>>

科目: 來源: 題型:選擇題

8.設i為虛數(shù)單位,復數(shù)z滿足$\frac{2i}{z}=1-i$,則復數(shù)z等于( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目: 來源: 題型:選擇題

7.關于x的方程x2-x•cosA•cosB-cos2$\frac{C}{2}$=0有一個根為1,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知圓C經(jīng)過點A(0,2),B(2,0),圓C的圓心在圓x2+y2=2的內部,且直線3x+4y+5=0被圓C所截得的弦長為2$\sqrt{3}$,點P為圓C上異于A、B的任意一點,直線PA與x軸交于點M,直線PB與y軸交于點N.
(1)求圓C的方程;
(2)求證:|AN|•|BM|為定值;
(3)當$\overrightarrow{PA}$•$\overrightarrow{PB}$取得最大值時,求|MN|.

查看答案和解析>>

科目: 來源: 題型:解答題

5.以直角坐標系xOy的原點為極點,x軸的正半軸為極軸建立極坐標系,兩坐標系中的單位長度相同.已知點A的極坐標為(${\sqrt{2}$,$\frac{π}{4}}$),曲線C在直角坐標系下參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t為參數(shù)),曲線C在點A處的切線為l.
(1)求切線l的極坐標方程;
(2)已知點P直角坐標為(-$\frac{1}{4}$,$\frac{{\sqrt{3}}}{4}$),過點P任作一直線交曲線C于A,B兩點,求|AB|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.在△ABC中,A,B,C所對的邊分別為a,b,c已知$b=\sqrt{2}$,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.如圖,在空間直角坐標系D-xyz中,四棱柱ABCD-A1B1C1D1為長方體,AA1=AB=2AD,點E為C1D1的中點,則二面角B1-A1B-E的余弦值為( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.在多面體ABCDEF中,四邊形ABCD為正方形,AD=DE=2BF=2,ED⊥平面ABCD,F(xiàn)B∥ED.
(1)若$\overrightarrow{FG}=\frac{1}{2}(\overrightarrow{FA}+\overrightarrow{FE})$,求證:FG∥平面ABCD;
(2)求二面角B-EF-C的大。

查看答案和解析>>

科目: 來源: 題型:選擇題

1.A是曲線ρ=3cosθ上任意一點,點A到直線ρcosθ=-1距離的最大值為( 。
A.$\frac{5}{2}$B.3C.4D.5

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知在平面直角坐標系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+\sqrt{2}-1\end{array}\right.$(t是參數(shù)),以原點O為極點,Ox為極軸建立極坐標系,圓C的極坐標方程為p=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)求圓心C的直角坐標方程;
(Ⅱ)由直線l上的點向圓C引切線,求切線長的最小值.

查看答案和解析>>

同步練習冊答案