相關習題
 0  237838  237846  237852  237856  237862  237864  237868  237874  237876  237882  237888  237892  237894  237898  237904  237906  237912  237916  237918  237922  237924  237928  237930  237932  237933  237934  237936  237937  237938  237940  237942  237946  237948  237952  237954  237958  237964  237966  237972  237976  237978  237982  237988  237994  237996  238002  238006  238008  238014  238018  238024  238032  266669 

科目: 來源: 題型:選擇題

20.如圖為一個簡單組合體的三視圖,其中正視圖由 一個半圓和一個正方形組成,則該組合體的表面積為( 。
A.20+17πB.20+16πC.16+17πD.16+l6π

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知函數(shù)f1(x)=x2-2|x|,f2(x)=x+2,設g(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$-$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$,若 a,b∈[-2,4],且當x1,x2∈[a,b](x1≠x2)時,$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>0恒成立,則b-a的最大值為(  )
A.6B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知等差數(shù)列{an}的前n項和為Sn,且2(a1+a3+a5)+3(a8+a10)=36,則S11=( 。
A.66B.55C.44D.33

查看答案和解析>>

科目: 來源: 題型:選擇題

17.函數(shù)$y=sin\frac{1}{2}x$( 。
A.在[-π,π]上是增函數(shù)B.在[0,π]上是減函數(shù)
C.在$[{-\frac{π}{2},\frac{π}{2}}]$上是減函數(shù)D.在[-π,0]上是減函數(shù)

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知a>0,函數(shù)$f(x)=-2asin({2x+\frac{π}{6}})+2a+b$,當$x∈[{0,\frac{π}{2}}]$時,-5≤f(x)≤1
(1)求常數(shù)a,b的值;
(2)當$x∈[{0,\frac{π}{4}}]$時,求f(x)的最大值與最小值及相應的x的值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)$f(x)=3sin({\frac{x}{2}+\frac{π}{6}})+3$
(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期和單調(diào)減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知函數(shù)$f(x)={log_a}\frac{x+1}{x-1}(a>0,且a>0,且a≠1)$
(Ⅰ)判斷f(x)的奇偶性并證明;
(Ⅱ)若對于x∈[2,4],恒有$f(x)>{log_a}\frac{m}{(x-1)(7-x)}$成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

13.(Ⅰ)已知在△ABC中,AB=1,BC=2,∠B=$\frac{π}{3}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$求(2$\overrightarrow{a}$-3$\overrightarrow$)•(4$\overrightarrow{a}$+$\overrightarrow$);
(Ⅱ)已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),且向量t$\overrightarrow{a}$+$\overrightarrow$與向量$\overrightarrow{a}$-$\overrightarrow$平行,求t的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.在極坐標系中,以點C(2,$\frac{π}{2}$)為圓心,半徑為3的圓C與直線l:θ=$\frac{π}{3}$(ρ=R)交于A,B兩點.
(1)求圓C及直線l的普通方程.
(2)求弦長|AB|.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.若$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow$=(cos10°,sin190°),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.cos10°D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案