相關習題
 0  238460  238468  238474  238478  238484  238486  238490  238496  238498  238504  238510  238514  238516  238520  238526  238528  238534  238538  238540  238544  238546  238550  238552  238554  238555  238556  238558  238559  238560  238562  238564  238568  238570  238574  238576  238580  238586  238588  238594  238598  238600  238604  238610  238616  238618  238624  238628  238630  238636  238640  238646  238654  266669 

科目: 來源: 題型:選擇題

19.(1+2x)3(2-x)4的展開式中x的系數(shù)是( 。
A.96B.64C.32D.16

查看答案和解析>>

科目: 來源: 題型:解答題

18.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$(t為參數(shù)).以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ.直線l交曲線C于A,B兩點.
(1)寫出直線l的極坐標方程和曲線C的直角坐標方程;
(2)設點P的直角坐標為(-2,-4),求點P到A,B兩點的距離之積.

查看答案和解析>>

科目: 來源: 題型:填空題

17.函數(shù)$f(x)=2sin(2x+ϕ)(|ϕ|<\frac{π}{2})$的圖象向左平移$\frac{π}{6}$個單位長度后對應的函數(shù)是奇函數(shù),函數(shù)$g(x)=(2+\sqrt{3})cos2x$.若關于x的方程f(x)+g(x)=-2在[0,π)內(nèi)有兩個不同的解α,β,則cos(α-β)的值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.要得到函數(shù)$y=\frac{1}{2}cos2x$的圖象,只需將函數(shù)$y=\frac{1}{2}sin2x$的圖象(  )
A.向右平移$\frac{π}{2}$個單位B.向右平移$\frac{π}{4}$個單位
C.向左平移$\frac{π}{2}$個單位D.向左平移$\frac{π}{4}$個單位

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知i為虛數(shù)單位,若z1=1+2i,z2=1-i,則復數(shù)$\frac{z_1}{z_2^2}$在復平面內(nèi)對應點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:解答題

14.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+cosθ}\\{y=4+sinθ}\end{array}\right.$(θ為參數(shù)).以原點為極點、x軸正半軸為極軸建立極坐標系,已知曲線C2:ρ(sinθ-kcosθ)=3,k為實數(shù).
(1)求曲線C1的普通方程及曲線C2的直角坐標方程;
(2)若點P在曲線C2上,從點P向C1作切線,切線長的最小值為2$\sqrt{2}$,求實數(shù)k的值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=|lnx-$\frac{a}{x}$|+b,其中a,b∈R且a>2,若f(2)=$\frac{e}{2}$-ln2+1,f(x)在(1,f(1))處切線的斜率為-e-1.
(1)求函數(shù)f(x)的解析式及其單調(diào)區(qū)間;
(2)若實數(shù)c,d滿足cd=λ,且f(c)<f(d)對于任意c>d恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設函數(shù)f(x)=min{xlnx,$\frac{{x}^{2}}{{e}^{x}}$}(min{a,b}表示a,b中的較小者),則函數(shù)f(x)的最大值為( 。
A.$\frac{4}{{e}^{2}}$B.2ln2C.$\frac{1}{e}$D.$\frac{3}{2}$ln2

查看答案和解析>>

科目: 來源: 題型:解答題

11.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)),若以該直角坐標系的原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ+4cosθ=0.
(Ⅰ)求直線l與曲線C的普通方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點,設M(-2,0),求|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|的值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.若(1-8x5)(ax2-$\frac{1}{\sqrt{x}}$)4的展開式中含x3項的系數(shù)是16,則a=±2.

查看答案和解析>>

同步練習冊答案