相關(guān)習(xí)題
 0  239122  239130  239136  239140  239146  239148  239152  239158  239160  239166  239172  239176  239178  239182  239188  239190  239196  239200  239202  239206  239208  239212  239214  239216  239217  239218  239220  239221  239222  239224  239226  239230  239232  239236  239238  239242  239248  239250  239256  239260  239262  239266  239272  239278  239280  239286  239290  239292  239298  239302  239308  239316  266669 

科目: 來源: 題型:解答題

4.設(shè)Sn是數(shù)列{an}的前n項和,an>0,且4Sn=an(an+2).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知a∈R,函數(shù)f(x)=ex-ax(e=2.71828…是自然對數(shù)的底數(shù)).
(I)若函數(shù)f(x)在區(qū)間(-e,-1)上是減函數(shù),求a的取值范圍;
(II)若函數(shù)F(x)=f(x)-(ex-2ax+2lnx+a)在區(qū)間(0,$\frac{1}{2}$)內(nèi)無零點,求a的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖為一個多面體的三視圖,則該多面體的體積為( 。
A.$\frac{20}{3}$B.7C.$\frac{22}{3}$D.$\frac{23}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=(x+1)21n(x+1)-x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)當(dāng)x≥0時,f(x)≥ax2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°,$CD=\sqrt{3}$.
(1)證明:DC⊥AB;
(2)若C在平面ABDE內(nèi)的正投影為H,求點H到平面BCD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

19.某經(jīng)銷商從外地一水殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結(jié)果如下圖:

(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)試估計這批小龍蝦的平均重量;
(3)為適應(yīng)市場需求,制定促銷策略.該經(jīng)銷商又將這批小龍蝦分成三個等級,并制定出銷售單價,如下表:
等級一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
單價(元/只)1.21.51.8
試估算該經(jīng)銷商以每千克至多花多少元(取整數(shù))收購這批小龍蝦,才能獲得利潤?

查看答案和解析>>

科目: 來源: 題型:填空題

18.連擲兩次骰子得到的點數(shù)分別為m和n,記向量$\overrightarrow a=(m,n)$與向量$\overrightarrow b=(1,-1)$的夾角為θ,則θ為銳角的概率是$\frac{5}{12}$.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}2a-x,x≤0\\{log_a}x,x>0\end{array}\right.$(a>0且a≠1),若f(f(1))=1,則a=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在直角坐標系xOy中,直線$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),$α∈(0,\frac{π}{2})$)與圓C:x2+y2-2x-4x+1=0相交于點A,B,以O(shè)為極點,x軸正半軸為極軸建立極坐標系.
(1)求直線l與圓C的極坐標方程;
(2)求$\frac{1}{{|{OA}|}}+\frac{1}{{|{OB}|}}$的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-x,g(x)=ex-ax-1(e為自然對數(shù)的底數(shù)).
(1)討論函數(shù)g(x)的單調(diào)性;
(2)當(dāng)x>0時,f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案