相關(guān)習(xí)題
 0  240293  240301  240307  240311  240317  240319  240323  240329  240331  240337  240343  240347  240349  240353  240359  240361  240367  240371  240373  240377  240379  240383  240385  240387  240388  240389  240391  240392  240393  240395  240397  240401  240403  240407  240409  240413  240419  240421  240427  240431  240433  240437  240443  240449  240451  240457  240461  240463  240469  240473  240479  240487  266669 

科目: 來源: 題型:選擇題

5.已知${S_n}=1+\frac{1}{1+2}+\frac{1}{1+2+3}+…+\frac{1}{1+2+3+…+n}$,則S20=(  )
A.$\frac{20}{21}$B.$\frac{19}{20}$C.$\frac{38}{20}$D.$\frac{40}{21}$

查看答案和解析>>

科目: 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{a+i}{1-i}$(a∈R,i為虛數(shù)單位),若z是純虛數(shù),則復(fù)數(shù)z的模為1.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=log4$\frac{{{x^2}+ax+b}}{{{x^2}+x+1}}$的定義域為R,且y=f(x+1)的圖象過點A(-1,0).
(1)求實數(shù)b的值;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使函數(shù)f(x)在R上的最大值為1-log43?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x-m|
(Ⅰ)當(dāng)m=2時,求不等式f(x)>4的解集;
(Ⅱ)當(dāng)m>1時,若f(x)>4的解集是{x|x<0或x>4},且關(guān)于x的不等式f(x)<a有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.函數(shù)y=sin($\frac{k}{2}$x+$\frac{π}{3}$)(k>0)的最小正周期不大于2,則正整數(shù)k的最小值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)$f(x)=2{sin^2}({x-\frac{π}{6}})-1$(x∈R),則下列結(jié)論正確的是( 。
A.函數(shù)f(x)是最小正周期為π的奇函數(shù)B.函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{12}$對稱
C.函數(shù)f(x)在區(qū)間$[{\frac{π}{6},\frac{5π}{12}}]$上是增函數(shù)D.函數(shù)f(x)的圖象關(guān)于點$({-\frac{π}{12},0})$對稱

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,PC=AD=CD=$\frac{1}{2}$AB=1,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)若M為線段PA的中點,且過C,D,M三點的平面與線段PB交于點N,確定點N的位置,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知:-$\frac{3π}{2}$<x<-π,tanx=-3. 
(Ⅰ)求 sinx•cosx的值;
(Ⅱ)求$\frac{sin(360°-x)•cos(180°-x)-si{n}^{2}x}{cos(180°+x)•cos(90°-x)+co{s}^{2}x}$的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時n的值為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

16.α為第三象限的角,則$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=( 。
A.0B.1C.-1D.2

查看答案和解析>>

同步練習(xí)冊答案