相關(guān)習(xí)題
 0  240426  240434  240440  240444  240450  240452  240456  240462  240464  240470  240476  240480  240482  240486  240492  240494  240500  240504  240506  240510  240512  240516  240518  240520  240521  240522  240524  240525  240526  240528  240530  240534  240536  240540  240542  240546  240552  240554  240560  240564  240566  240570  240576  240582  240584  240590  240594  240596  240602  240606  240612  240620  266669 

科目: 來源: 題型:選擇題

9.設(shè)集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},則M∩(∁UN)=( 。
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小正周期
(2)當(dāng)$x∈[-\frac{π}{6},\frac{π}{2}]$時,求函數(shù)的值域.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{\sqrt{x+1}}}{x}$則函數(shù)的定義域為{x|x≥-1且x≠0}.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.下列說法正確的是(  )
A.若$\vec a•\vec b=\vec b•\vec c$,則$\vec a=\vec c$B.與向量$\vec a$共線的單位向量為$±\frac{\vec a}{{|{\vec a}|}}$
C.若$\vec a∥\vec b$,$\vec b∥\vec c$,則$\vec a∥\vec c$D.若$\vec a∥\vec b$,則存在唯一實數(shù)λ使得$\vec a=λ\vec b$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.甲、乙兩支排球隊進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊獲勝的概率是$\frac{1}{2}$外,其余每局比賽甲隊獲勝的概率都是$\frac{2}{3}$.假設(shè)各局比賽結(jié)果相互獨立.則甲隊以3:2獲得比賽勝利的概率為( 。
A.$\frac{2}{81}$B.$\frac{4}{27}$C.$\frac{8}{27}$D.$\frac{16}{81}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設(shè)等差數(shù)列{an}的前n項和為Sn,等差數(shù)列{bn}的前n項和為Tn,若此時滿足$\frac{S_n}{T_n}=\frac{n-3}{n+3}$,則$\frac{a_2}{{{b_{10}}+{b_{20}}}}+\frac{{{a_{28}}}}{{{b_{12}}+{b_{18}}}}$=(  )
A.1B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{13}{16}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.隨機變量X的概率分布規(guī)律為P(X=n)=$\frac{a}{n(n+1)}$(n=1,2,3,4,…,10),中a是常數(shù),則P($\frac{1}{2}$<X<$\frac{5}{2}$)的值為( 。
A.$\frac{7}{15}$B.$\frac{3}{5}$C.$\frac{11}{15}$D.$\frac{5}{6}$

查看答案和解析>>

科目: 來源: 題型:填空題

2.在等比數(shù)列{an}中,若a5+a6+a7+a8=15,a6a7=-5,$\frac{1}{a_5}+\frac{1}{a_6}+\frac{1}{a_7}+\frac{1}{a_8}$=-3.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=-10,a3+a5=-8,則當(dāng)Sn取最小值時,n等于( 。
A.5B.6C.5或6D.11

查看答案和解析>>

科目: 來源: 題型:解答題

20.通過隨機詢問某校110名高中學(xué)生在購買食物時是否看營養(yǎng)說明,得到如下列聯(lián)表:
 總計
看營養(yǎng)說明503080
不看營養(yǎng)說明102030
總計6050110
(1)從這50名女生中按是否看營養(yǎng)說明分層抽樣,抽取一個容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)從(1)中的5名女生中隨機選取2名進(jìn)行深度訪談,求選到看與不看營養(yǎng)說明的女生各1名的概率;
(3)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.010的前提下認(rèn)為“性別與在購買食物時看營養(yǎng)說明有關(guān)系”?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

同步練習(xí)冊答案