相關(guān)習(xí)題
 0  241353  241361  241367  241371  241377  241379  241383  241389  241391  241397  241403  241407  241409  241413  241419  241421  241427  241431  241433  241437  241439  241443  241445  241447  241448  241449  241451  241452  241453  241455  241457  241461  241463  241467  241469  241473  241479  241481  241487  241491  241493  241497  241503  241509  241511  241517  241521  241523  241529  241533  241539  241547  266669 

科目: 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,n∈N*,其前n項和為Sn
(1)求證:①數(shù)列{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列;
②對任意的正整數(shù)n,都有Sn>$\frac{\sqrt{4n+1}-1}{2}$;
(2)設(shè)數(shù)列{bn}的前n項和為Tn,且滿足:$\frac{{T}_{n+1}}{{{a}_{n}}^{2}}$=$\frac{{T}_{n}}{{{a}_{n+1}}^{2}}$+16n2-8n-3.試確定b1的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目: 來源: 題型:填空題

1.如圖,正四棱柱ABCD-A1B1C1D1的體積為27,點E,F(xiàn)分別為棱B1B,C1C上的點(異于端點),且EF∥BC,則四棱錐A1-AEFD的體積為9.

查看答案和解析>>

科目: 來源: 題型:填空題

20.要得到函數(shù)$y=3sin({2x-\frac{π}{3}})$的圖象,只需將函數(shù)y=3sin2x的圖象向右至少平移$\frac{π}{6}$個單位.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知曲線$y=\frac{4}{x}(x>0)$的一條切線斜率為-1,則切點的橫坐標(biāo)為2.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.若f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4)上是減函數(shù),則實數(shù)a的取值范圍是(  )
A.a<-3B.a>-3C.a≤-3D.a≥-3

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+1)lnx-a(x-1)在x=e處的切線在y軸上的截距為2-e.
(1)求a的值;
(2)函數(shù)f(x)能否在x=1處取得極值?若能取得,求此極值,若不能說明理由.
(3)當(dāng)1<x<2時,試比較$\frac{2}{x-1}$與 $\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$大。

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知向量$\overrightarrow{m}$=(1,1),向量$\overrightarrow{n}$與向量$\overrightarrow{m}$的夾角為$\frac{3π}{4}$,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求向量$\overrightarrow{n}$;
(2)設(shè)向量$\overrightarrow{a}$=(1,0),向量$\overrightarrow$=(cosx,2cos2($\frac{π}{3}-\frac{x}{2}$)),其中0<x<$\frac{2π}{3}$,若$\overrightarrow{n}$•$\overrightarrow{a}$=0,試求|$\overrightarrow{n}$+$\overrightarrow$|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.已知數(shù)列{an},{bn}的前n項和分別為An,Bn,且A1000=2,B1000=1007.記Cn=an•Bn+bn•An-an•bn(n∈N*),則數(shù)列{Cn}的前1000項的和為2014.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=ax+sinx的圖象在某兩點處的切線相互垂直,則a的值為0.

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)n∈N*,n≥3,k∈N*
(1)求值:
①kC${\;}_{n}^{k}$-nC${\;}_{n-1}^{k-1}$;
②k2C${\;}_{n}^{k}$-n(n-1)C${\;}_{n-2}^{k-2}$-nC${\;}_{n-1}^{k-1}$(k≥2);
(2)化簡:12C${\;}_{n}^{0}$+22C${\;}_{n}^{1}$+32C${\;}_{n}^{2}$+…+(k+1)2C${\;}_{n}^{k}$+…+(n+1)2C${\;}_{n}^{n}$.

查看答案和解析>>

同步練習(xí)冊答案