相關(guān)習題
 0  256838  256846  256852  256856  256862  256864  256868  256874  256876  256882  256888  256892  256894  256898  256904  256906  256912  256916  256918  256922  256924  256928  256930  256932  256933  256934  256936  256937  256938  256940  256942  256946  256948  256952  256954  256958  256964  256966  256972  256976  256978  256982  256988  256994  256996  257002  257006  257008  257014  257018  257024  257032  266669 

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =(a+b,sinA﹣sinC),且 =(c,sinA﹣sinB),且
(1)求角B的大小;
(2)若a+c=8,求AC邊上中線長的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點,是等腰三角形,的中點,上一點.

I)若平面,求

II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目: 來源: 題型:

【題目】本小題滿分12分某旅行社為調(diào)查市民喜歡“人文景觀”景點是否與年齡有關(guān),隨機抽取了55名市民,得到數(shù)據(jù)如下表:

喜歡

不喜歡

合計

大于40歲

20

5

25

20歲至40歲

10

20

30

合計

30

25

55

(1)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關(guān)?

(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , 的中點,點, 分別在棱, 上移動,且.

(1)當時,證明:直線平面;

(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠對新研發(fā)的一種產(chǎn)品進行試銷,得到如下數(shù)據(jù)表:

(1)根據(jù)上表求出回歸直線方程,并預測當單價定為8.3元時的銷量;

(2)如果該工廠每件產(chǎn)品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價應(yīng)該定為多少?

附:線性回歸方程中斜率和截距最小二乘估計計算公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為 , 是橢圓的長軸的兩個端點(位于右側(cè)),是橢圓在軸正半軸上的頂點.

(1)求橢圓的標準方程;

(2)是否存在經(jīng)過點且斜率為的直線與橢圓交于不同兩點,使得向量共線?如果存在,求出直線方程;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 (a﹣ccosB)=bsinC.
(1)求角C的大。
(2)若c=2,則當a,b分別取何值時,△ABC的面積取得最大值,并求出其最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

(1)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學期望;

(2)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.附:獨立性檢驗統(tǒng)計量,其中.

獨立性檢驗臨界值表:

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學生成績的平均分是85,乙班學生成績的中位數(shù)是89.

(1)求的值;

(2)計算乙班7位學生成績的方差.

(3)從成績在90分以上的學生中隨機抽取兩名學生,求乙班至少有一名學生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知{an}是公差為1的等差數(shù)列,a1 , a5 , a25成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= 3+an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案