科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+mx+n有兩個零點(diǎn)﹣1與3.
(1)求出函數(shù)f(x)的解析式,并指出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若g(x)=f(|x|)在x1 , x2∈[t,t+1]是增函數(shù),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由;
查看答案和解析>>
科目: 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,則當(dāng)△PF1F2的面積等于a2時,雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},則A∩B=( )
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180 cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取人,用表示身高在以上的男生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△中, , , 分別為邊的中點(diǎn),點(diǎn)分別為線段的中點(diǎn).將△沿折起到△的位置,使.點(diǎn)為線段上的一點(diǎn),如圖2.
(Ⅰ)求證: ;
(Ⅱ)線段上是否存在點(diǎn)使得平面?若存在,求出的長,若不存在,請說明理由;
(Ⅲ)當(dāng)時,求直線與平面所成角的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的上下頂點(diǎn)分別為,且點(diǎn). 分別為橢圓的左、右焦點(diǎn),且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)是橢圓上異于, 的任意一點(diǎn),過點(diǎn)作軸于, 為線段
的中點(diǎn).直線與直線交于點(diǎn), 為線段的中點(diǎn), 為坐標(biāo)原點(diǎn).求
的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列同時滿足下列條件:
① ;② ;③是的因數(shù)().
(Ⅰ)當(dāng)時,寫出數(shù)列的前五項(xiàng);
(Ⅱ)若數(shù)列的前三項(xiàng)互不相等,且時, 為常數(shù),求的值;
(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com