科目: 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數(shù)列{an}的通項公式;
(3)若a1+2a2+3a3+…+nan>λ2n對一切正整數(shù)n恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是一塊足球訓(xùn)練場地,其中球門AB寬7米,B點位置的門柱距離邊線EF的長為21米,現(xiàn)在有一球員在該訓(xùn)練場地進行直線跑動中的射門訓(xùn)練.球員從離底線AF距離x(x≥10)米,離邊線EF距離a(7≤a≤14)米的C處開始跑動,跑動線路為CD(CD∥EF),設(shè)射門角度∠ACB=θ.
(1)若a=14,
①當球員離底線的距離x=14時,求tanθ的值;
②問球員離底線的距離為多少時,射門角度θ最大?
(2)若tanθ= ,當a變化時,求x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大小;
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<].
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+ |+a|x﹣ |.
(Ⅰ)當a=﹣1時,解不等式f(x)≤3x;
(Ⅱ)當a=2時,若關(guān)于x的不等式2f(x)+1<|1﹣b|的解集為空集,求實數(shù)b的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)= +lnx,其中a為實常數(shù).
(1)討論f(x)的單調(diào)性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=﹣ ,Sn+ =an﹣2(n≥2,n∈N)
(1)求S2 , S3 , S4的值;
(2)猜想Sn的表達式;并用數(shù)學(xué)歸納法加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時間(單位:小時),統(tǒng)計結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間[2,4]的有8人.
(1)求直方圖中a的值及甲班學(xué)生每天平均學(xué)習(xí)時間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個班每天平均學(xué)習(xí)時間大于10個小時的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l的極坐標方程為ρsin(θ+ )= .
(1)在極坐標系下寫出θ=0和θ= 時該直線上的兩點的極坐標,并畫出該直線;
(2)已知Q是曲線ρ=1上的任意一點,求點Q到直線l的最短距離及此時Q的極坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com