科目: 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且b=acosc+ csinA.
(1)求角A的大小;
(2)當(dāng)a=3時(shí),求△ABC周長(zhǎng)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量 =( ,cos ), =(cos ,1),且f(x)= .
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時(shí)x的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個(gè)化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:
原料 | 磷酸鹽(單位:噸) | 硝酸鹽(單位:噸) |
甲 | 4 | 20 |
乙 | 2 | 20 |
現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計(jì)劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤(rùn)為3萬元;生產(chǎn)1車皮乙種肥料,利潤(rùn)為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=|2x﹣1|,定義f1(x)=x,fn+1(x)=f(fn(x)),已知函數(shù)g(x)=fm(x)﹣x有8個(gè)零點(diǎn),則m的值為( )
A.8
B.4
C.3
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) ,設(shè)F(x)=x2f(x),則F(x)是( )
A.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞減
B.奇函數(shù),在(﹣∞,+∞)上單調(diào)遞增
C.偶函數(shù),在(﹣∞,0)上遞減,在(0,+∞)上遞增
D.偶函數(shù),在(﹣∞,0)上遞增,在(0,+∞)上遞減
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè), , , , 是5個(gè)正實(shí)數(shù)(可以相等).
證明:一定存在4個(gè)互不相同的下標(biāo), , , ,使得.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系中,直線的方程為: ,直線的方程為.
(Ⅰ)寫出曲線的直角坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于兩點(diǎn), 與曲線交于兩點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]在平面坐標(biāo)系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值
查看答案和解析>>
科目: 來源: 題型:
【題目】對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足
=2kan對(duì)任意正整數(shù)n(n> k) 總成立,則稱數(shù)列{an} 是“P(k)數(shù)列”.
(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;
若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com