科目: 來源: 題型:
【題目】如果函數(shù)f(x)是定義在(﹣3,3)上的奇函數(shù),當0<x<3時,函數(shù)f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(﹣3,﹣ )∪(0,1)∪( ,3)
B.(﹣ ,﹣1)∪(0,1)∪( ,3)
C.(﹣3,﹣1)∪(0,1)∪(1,3)
D.(﹣3,﹣ )∪(0,1)∪(1,3)
查看答案和解析>>
科目: 來源: 題型:
【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】某印刷廠的打印機每5年需淘汰一批舊打印機并購買新機,買新機時,同時購買墨盒,每臺新機隨機購買第一盒墨150元,優(yōu)惠0元;再每多買一盒墨都要在原優(yōu)惠基礎上多優(yōu)惠一元,即第一盒墨沒有優(yōu)惠,第二盒墨優(yōu)惠一元,第三盒墨優(yōu)惠2元,……,依此類推,每臺新機最多可隨新機購買25盒墨.平時購買墨盒按零售每盒200元.
公司根據(jù)以往的記錄,十臺打印機正常工作五年消耗墨盒數(shù)如下表:
消耗墨盒數(shù) | 22 | 23 | 24 | 25 |
打印機臺數(shù) | 1 | 4 | 4 | 1 |
以這十臺打印機消耗墨盒數(shù)的頻率代替一臺打印機消耗墨盒數(shù)發(fā)生的概率,記ξ表示兩臺打印機5年消耗的墨盒數(shù).
(1)求ξ的分布列;
(2)若在購買兩臺新機時,每臺機隨機購買23盒墨,求這兩臺打印機正常使用五年在消耗墨盒上所需費用的期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】超市某種綠色食品,過去20個月該食品的月市場需求量(單位: , )即每月銷售的數(shù)據(jù)記錄如下:
137 108 114 121 115 135 122 140 128 139
125 140 130 125 105 115 133 124 149 115
對這20個數(shù)據(jù)按組距10進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
(Ⅰ)寫出, 的值.若視分布在各區(qū)間內(nèi)的頻率為相應的概率,試計算;
(Ⅱ)記組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為, , 組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為, ,試分別比較與, 與的大小;(只需寫出結論)
(Ⅲ)為保證該綠色產(chǎn)品的質(zhì)量,超市規(guī)定該產(chǎn)品僅在每月一日上架銷售,每月最后一日對所有未售出的產(chǎn)品進行下架處理.若超市每售出該綠色食品可獲利潤5元,未售出的食品每虧損3元,并且超市為下一個月采購了該綠色食品,求超市下一個月銷售該綠色食品的利潤的分布列及數(shù)學期望.(以分組的區(qū)間中點值代表該組的各個值,并以月市場需求量落入該區(qū)間的頻率作為月市場需求量取該組區(qū)間中點值的概率)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=logmx(m為常數(shù),m>0且m≠1),設f(a1),f(a2),…,f(an)(n∈N+)是首項為4,公差為2的等差數(shù)列.
(Ⅰ)求證:數(shù)列l(wèi)ogman=2n+2,{an}是等比數(shù)列;
(Ⅱ)若bn=anf(an),記數(shù)列{bn}的前n項和為Sn , 當m= 時,求Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an﹣1表示an;
(2)求數(shù)列{an}的通項公式;
(3)設Tn= + + +…+ ,求證:Tn< .
查看答案和解析>>
科目: 來源: 題型:
【題目】在矩形中, , 是邊的中點,如圖(1),將沿直線翻折到的位置,使,如圖(2).
(Ⅰ)求證:平面平面;
(Ⅱ)已知, , 分別是線段, , 上的點,且, , 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線上的點到二定點、 的距離之和為定值,以為圓心半徑為4的圓與有兩交點,其中一交點為, 在y軸正半軸上,圓與x軸從左至右交于二點, .
(1)求曲線、的方程;
(2)曲線,直線與交于點,過點的直線與曲線交于二點,過做的切線, 交于.當在x軸上方時,是否存在點,滿足,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com