相關習題
 0  257703  257711  257717  257721  257727  257729  257733  257739  257741  257747  257753  257757  257759  257763  257769  257771  257777  257781  257783  257787  257789  257793  257795  257797  257798  257799  257801  257802  257803  257805  257807  257811  257813  257817  257819  257823  257829  257831  257837  257841  257843  257847  257853  257859  257861  257867  257871  257873  257879  257883  257889  257897  266669 

科目: 來源: 題型:

【題目】已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),
(1)求g(x)的定義域;
(2)求g(x)的最大值以及g(x)取最大值時x的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若以曲線上任意一點為切點作切線,曲線上總存在異于的點,以點為切點作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:

①函數(shù)的圖象具有“可平行性”;

②定義在的奇函數(shù)的圖象都具有“可平行性”;

③三次函數(shù)具有“可平行性”,且對應的兩切點, 的橫坐標滿足;

④要使得分段函數(shù)的圖象具有“可平行性”,當且僅當.

其中的真命題個數(shù)有()

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)y=f(x)圖象上不同兩點A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= 叫曲線y=f(x)在點A與點B之間的“彎曲度”,給出以下命題: 1)函數(shù)y=x3﹣x2+1圖象上兩點A、B的橫坐標分別為1,2,則φ(A,B)>
2)存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
3)設點A、B是拋物線,y=x2+1上不同的兩點,則φ(A,B)≤2;
4)設曲線y=ex上不同兩點A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,則實數(shù)t的取值范圍是(﹣∞,1);
以上正確命題的序號為(寫出所有正確的)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= + 的兩個極值點分別為x1 , x2 , 且x1∈(0,1),x2∈(1,+∞);點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內的點,則實數(shù)a的取值范圍是(
A.(1,3]
B.(1,3)
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】過雙曲線 =1(a>0,b>0)的左焦點F(﹣c,0)作圓x2+y2=a2的切線,切點為E,延長FE交拋物線y2=4cx于點P,O為坐標原點,若 = + ),則雙曲線的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】若點( ,2)在冪函數(shù)f(x)的圖象上,點(2, )在冪函數(shù)g(x)的圖象上,定義h(x)= 求函數(shù)h(x)的最大值及單調區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義域為R的奇函數(shù)y=f(x)的導函數(shù)為y=f′(x),當x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關系正確的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)單調遞增,其中

(1)求的值;

(2)若,當時,試比較的大小關系(其中的導函數(shù)),請寫出詳細的推理過程;

(3)當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知y=f(x)是定義域為R的奇函數(shù),當x∈[0,+∞)時,f(x)=x2﹣2x.
(Ⅰ)寫出函數(shù)y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3個不同的解,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實數(shù)a的取值范圍是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

同步練習冊答案