相關習題
 0  257761  257769  257775  257779  257785  257787  257791  257797  257799  257805  257811  257815  257817  257821  257827  257829  257835  257839  257841  257845  257847  257851  257853  257855  257856  257857  257859  257860  257861  257863  257865  257869  257871  257875  257877  257881  257887  257889  257895  257899  257901  257905  257911  257917  257919  257925  257929  257931  257937  257941  257947  257955  266669 

科目: 來源: 題型:

【題目】判斷下列命題的真假:
(1)存在一個函數(shù),既是偶函數(shù)又是奇函數(shù);
(2)每一條線段的長度都能用正有理數(shù)來表示;
(3)存在一個實數(shù)x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,(a為常數(shù)且a>0).
(1)若函數(shù)的定義域為 ,值域為 ,求a的值;
(2)在(1)的條件下,定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度為n﹣m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集構成的各區(qū)間的長度和超過 ,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設命題p:函數(shù)f(x)=lg(ax2x a)的定義域為R;命題q:不等式3x-9x<a對一切正實數(shù)均成立.如果命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).

(1)求實數(shù)的值;

(2)用表示中的最小值,設函數(shù),若函數(shù)

為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】12分如圖,橢圓的離心率,短軸的兩個端點分別為B1、B2,焦點為F1、F2,四邊形F1 B1F2 B2的內切圓半徑為

1求橢圓C的方程

2過左焦點F1的直線交橢圓于M、N兩點,交直線于點P,,試證為定值,并求出此定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】心理學家發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學(男3020),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如下表:(單位:人)

(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關?

(2)經過多次測試后,女生甲每次解答一道幾何題所用的時間在5~7分鐘,女生乙每次解答一道幾何題所用的時間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

附表:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動點M(x,y)到直線lx=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點.若APB的中點,求直線m的斜率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 C 的中心在坐標原點,焦點在 X 軸上,橢圓 C 上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓 C 的標準方程;
(2)若直線 與橢圓 C 相交于 A,B 兩點( A,B 不是左右頂點),且以 AB 為直徑的圖過橢圓 C 的右頂點.求證:直線 l 過定點,并求出該定點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的中心在原點,焦點為,且離心率為 .
(1)求橢圓的方程;
(2)直線(與坐標軸 不平行)與橢圓交于不同的兩點,且線段中點的橫坐標為 ,求直線傾斜角的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C1 (a>b>0)的離心率為e=,過C1的左焦點F1的直線l:x-y+2=0,直線l被圓C2 (r>0)截得的弦長為2

(1)求橢圓C1的方程:

(2)設C1的右焦點為F2,在圓C2上是否存在點P,滿足|PF1|=|PF2|,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.

查看答案和解析>>

同步練習冊答案