相關(guān)習(xí)題
 0  257994  258002  258008  258012  258018  258020  258024  258030  258032  258038  258044  258048  258050  258054  258060  258062  258068  258072  258074  258078  258080  258084  258086  258088  258089  258090  258092  258093  258094  258096  258098  258102  258104  258108  258110  258114  258120  258122  258128  258132  258134  258138  258144  258150  258152  258158  258162  258164  258170  258174  258180  258188  266669 

科目: 來(lái)源: 題型:

【題目】設(shè)f(x)=etx1﹣tlnx,(t>0)
(Ⅰ)若t=1,證明x=1是函數(shù)f(x)的極小值點(diǎn);
(Ⅱ)求證:f(x)≥0.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】判斷居民戶是否小康的一個(gè)重要指標(biāo)是居民戶的年收入,某市從轄區(qū)內(nèi)隨機(jī)抽取100個(gè)居民戶,對(duì)每個(gè)居民戶的年收入與年結(jié)余的情況進(jìn)行分析,設(shè)第i個(gè)居民戶的年收入xi(萬(wàn)元),年結(jié)余yi(萬(wàn)元),經(jīng)過(guò)數(shù)據(jù)處理的: =400, =100, =900, =2850.
(1)已知家庭的年結(jié)余y對(duì)年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(2)若該市的居民戶年結(jié)余不低于5萬(wàn),即稱該居民戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)居民戶達(dá)到小康生活的最低年收入應(yīng)為多少萬(wàn)元? 附:在y=bx+a中,b= ,a= ,其中 , 為樣本平均值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】宿州某中學(xué)N名教師參加“低碳節(jié)能你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

25

m

p

75

25


(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加學(xué)校之間的宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點(diǎn), 是圓上不同于的任意一點(diǎn)

(1)求圓心的極坐標(biāo);

(2)求點(diǎn)到直線的距離的最大值

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣(a+1)lnx﹣ ,其中a∈R.
(Ⅰ)求證:當(dāng)a=1時(shí),函數(shù)y=f(x)沒(méi)有極值點(diǎn);
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x+c(c∈R)的一個(gè)零點(diǎn)為1. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè) ,若g(t)=2,求實(shí)數(shù)t的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某鋼廠打算租用,兩種型號(hào)的火車車皮運(yùn)輸900噸鋼材,,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬(wàn)元/個(gè)和2.4萬(wàn)元/個(gè),鋼廠要求租車皮總數(shù)不超過(guò)21個(gè),且型車皮不多于型車皮7個(gè),分別用,表示租用,兩種車皮的個(gè)數(shù).

1)用,列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)分別租用兩種車皮的個(gè)數(shù)是多少時(shí),才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為菱形, 為正三角形,且分別為的中點(diǎn), 平面, 平面

1)求證: 平面;

2)求與平面所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn).

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某鋼廠打算租用,兩種型號(hào)的火車車皮運(yùn)輸900噸鋼材,兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬(wàn)元/個(gè)和2.4萬(wàn)元/個(gè),鋼廠要求租車皮總數(shù)不超過(guò)21個(gè),且型車皮不多于型車皮7個(gè),分別用,表示租用,兩種車皮的個(gè)數(shù).

1)用列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

2)分別租用,兩種車皮的個(gè)數(shù)是多少時(shí),才能使得租金最少?并求出此最小租金.

查看答案和解析>>

同步練習(xí)冊(cè)答案