相關(guān)習(xí)題
 0  258644  258652  258658  258662  258668  258670  258674  258680  258682  258688  258694  258698  258700  258704  258710  258712  258718  258722  258724  258728  258730  258734  258736  258738  258739  258740  258742  258743  258744  258746  258748  258752  258754  258758  258760  258764  258770  258772  258778  258782  258784  258788  258794  258800  258802  258808  258812  258814  258820  258824  258830  258838  266669 

科目: 來(lái)源: 題型:

【題目】在二項(xiàng)式( + n展開(kāi)式中,前三項(xiàng)的系數(shù)成等差數(shù)列. 求:(1)展開(kāi)式中各項(xiàng)系數(shù)和;
【答案】解:由題意得2 × =1+ × ,
化為:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
中,令x=1,可得展開(kāi)式中各項(xiàng)系數(shù)和= =
(1)展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x2﹣9x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:

加工零件x(個(gè))

10

20

30

40

50

加工時(shí)間y(分鐘)

64

69

75

82

90

經(jīng)檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,那么對(duì)于加工零件的個(gè)數(shù)x與加工時(shí)間y這兩個(gè)變量,下列判斷正確的是(
A.成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)
B.成正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
C.成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,76)
D.成負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)(30,75)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)yf(x)在定義域[1,1]上既是奇函數(shù),又是減函數(shù).

(1)求證:對(duì)任意x1,x2[11],有[f(x1)f(x2)]·(x1x2)0;

(2)f(1a)f(1a2)0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某電視臺(tái)舉行電視奧運(yùn)知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰.已知選手甲答題的正確率為 . (Ⅰ)求選手甲可進(jìn)入決賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個(gè)數(shù)為ξ,試寫(xiě)出ξ的分布列,并求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐P ABCD中,ABCD,ABADCD2AB,平面PAD⊥底面ABCD,PAADEF分別為CDPC的中點(diǎn).

求證:(1) BE∥平面PAD;

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(本小題滿分14分)

設(shè)某旅游景點(diǎn)每天的固定成本為500元,門(mén)票每張為30元,變動(dòng)成本與購(gòu)票進(jìn)入旅游景點(diǎn)的人數(shù)的算術(shù)平方根成正比。一天購(gòu)票人數(shù)為25時(shí),該旅游景點(diǎn)收支平衡;一天購(gòu)票人數(shù)超過(guò)100時(shí),該旅游景點(diǎn)須另交保險(xiǎn)費(fèi)200元。設(shè)每天的購(gòu)票人數(shù)為,盈利額為。

之間的函數(shù)關(guān)系;

該旅游景點(diǎn)希望在人數(shù)達(dá)到20人時(shí)即不出現(xiàn)虧損,若用提高門(mén)票價(jià)格的措施,則每張門(mén)票至少要多少元(取整數(shù))?

(參考數(shù)據(jù):.)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知直線l經(jīng)過(guò)直線2xy50x2y0的交點(diǎn)P.

(1)點(diǎn)A(5,0)到直線l的距離為3,求直線l的方程;

(2)求點(diǎn)A(50)到直線l的距離的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】人口問(wèn)題是當(dāng)今世界各國(guó)普遍關(guān)注的問(wèn)題.認(rèn)識(shí)人口數(shù)量的變化規(guī)律,可以為有效控制人口增長(zhǎng)提供依據(jù).早在1798年,英國(guó)經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長(zhǎng)模型: ,其中x表示經(jīng)過(guò)的時(shí)間, 表示x=0時(shí)的人口,r表示人口的平均增長(zhǎng)率.

下表是1950―1959年我國(guó)人口數(shù)據(jù)資料:

如果以各年人口增長(zhǎng)率的平均值作為我國(guó)這一時(shí)期的人口增長(zhǎng)率,用馬爾薩斯人口增長(zhǎng)模型建立我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型,某同學(xué)利用圖形計(jì)算器進(jìn)行了如下探究:

由此可得到我國(guó)1950―1959年我國(guó)這一時(shí)期的具體人口增長(zhǎng)模型為____________. (精確到0.001)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】甲、乙倆人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為 ,乙每次擊中目標(biāo)的概率為 . (Ⅰ)記甲恰好擊中目標(biāo)2次的概率;
(Ⅱ)求乙至少擊中目標(biāo)2次的概率;
(Ⅲ)求乙恰好比甲多擊中目標(biāo)2次的概率;

查看答案和解析>>

同步練習(xí)冊(cè)答案