科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的側面PAD是正三角形,底面ABCD為菱形,A點E為AD的中點,若BE=PE.
(1)求證:PB⊥BC;
(2)若∠PEB=120°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù),滿足,.
(1)求函數(shù)的解析式;
(2)若關于的不等式在上有解,求實數(shù)的取值范圍;
(3)若函數(shù)的兩個零點分別在區(qū)間和內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)定義域為,若對于任意的,都有,且時,有.
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)設,若,對所有,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在坐標軸上,焦距長為2,左準線為: .
(1)求橢圓的方程及其離心率;
(2)若過點的直線交橢圓于, 兩點,且為線段的中點,求直線的方程;
(3)過橢圓右準線上任一點引圓: 的兩條切線,切點分別為, .試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學對男女學生是否喜愛古典音樂進行了一個調(diào)查,調(diào)查者對學校高三年級隨機抽取了100名學生,調(diào)查結果如表:
喜愛 | 不喜愛 | 總計 | |
男學生 | 60 | 80 | |
女學生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學生中以性別為依據(jù)采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓N的標準方程為(x-5)2+(y-6)2=a2(a>0).
(1)若點M(6,9)在圓上,求a的值;
(2)已知點P(3,3)和點Q(5,3),線段PQ(不含端點)與圓N有且只有一個公共點,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,求{bn}的前n項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司引進一條價值30萬元的產(chǎn)品生產(chǎn)線,經(jīng)過預測和計算,得到生產(chǎn)成本降低萬元與技術改造投入萬元之間滿足:①與和的乘積成正比;②當時, ,并且技術改造投入比率, 為常數(shù)且.
(1)求的解析式及其定義域;
(2)求的最大值及相應的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中, 為正三角形,平面底面,底面為梯形, , , , , ,點在棱上,且.
求證:(1)平面平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com