科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點,且 =λ.
(1)求證:平面ADM⊥平面PBC;
(2)是否存在實數(shù)λ,使得二面角P﹣DE﹣B的余弦值為 ?若存在,求出實數(shù)λ的值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】.如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,….利用這兩組同心圓可以畫出以A、B為焦點的雙曲線. 若其中經過點M、N、P的雙曲線的離心率分別是.則它們的大小關系是 (用“”連接).
查看答案和解析>>
科目: 來源: 題型:
【題目】調查表明,市民對城市的居住滿意度與該城市環(huán)境質量、城市建設、物價與收入的滿意度有極強的相關性,現(xiàn)將這三項的滿意度指標分別記為x、y、z,并對它們進行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標ω=x+y+z的值評定居民對城市的居住滿意度等級:若ω≥4,則居住滿意度為一級;若2≤ω≤3,則居住滿意度為二級;若0≤ω≤1,則居住滿意度為三級,為了解某城市居民對該城市的居住滿意度,研究人員從此城市居民中隨機抽取10人進行調查,得到如下結果:
人員編號 | 1 | 2 | 3 | 4 | 5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,1,1) | (1,2,1) |
人員編號 | 6 | 7 | 8 | 9 | 10 |
(x,y,z) | (1,2,2) | (1,1,1) | (1,2,2) | (1,0,0) | (1,1,1) |
(1)在這10名被調查者中任取兩人,求這兩人的居住滿意度指標z相同的概率;
(2)從居住滿意度為一級的被調查者中隨機抽取一人,其綜合指標為m,從居住滿意度不是一級的被調查者中任取一人,其綜合指標為n,記隨機變量ξ=m﹣n,求隨機變量ξ的分布列及其數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求實數(shù)k的值;
(2)判斷函數(shù)f(x)在(3,+∞)上的單調性,并利用定義證明;
(3)解關于x的不等式f(2x+6)>f(4x+3×2x+3).
查看答案和解析>>
科目: 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}中,a2=1,a2、a4、a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{an}的前n項和為Sn , 記bn= .Tn=b1+b2+…+bn , 求Tn .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義域為R的奇函數(shù)f(x),當x>0時,f(x)=ax2+bx+8(0<a<4),點A(2,0)在函數(shù)f(x)的圖象上,且關于x的方程f(x)+1=0有兩個相等的實根.
(1)求函數(shù)f(x)解析式;
(2)若x∈[t,t+2](t>0)時,函數(shù)f(x)有最小值1,求實數(shù)t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試點中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點測試結果互不影響,若考生小李和小王一起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.
(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可能性最大?請說明理由;
(2)假設小李選擇測試點進行測試,小王選擇測試點進行測試,記為兩人在各測試點測試合格的測試點個數(shù)之和,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】在籃球比賽中,如果某位球員的得分,籃板,助攻,搶斷,蓋帽中有兩個值達到或以上,就稱該球員拿到了兩雙.下表是某球員在最近五場比賽中的數(shù)據(jù)統(tǒng)計:
場次 | 得分 | 籃板 | 助攻 | 搶斷 | 蓋帽 |
()從上述比賽中任選場,求該球員拿到“兩雙”的概率.
()從上述比賽中任選場,設該球員拿到“兩雙”的次數(shù)為,求的分布列及數(shù)學期望.
()假設各場比賽互相獨立,將該球員在上述比賽中獲得“兩雙”的頻率作為概率,設其在接下來的三場比賽中獲得“兩雙”的次數(shù)為,試比賽與的大小關系(只需寫出結論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com