科目: 來源: 題型:
【題目】某校高二文科分四個班,各班人數(shù)恰好成等差數(shù)列,高二數(shù)學調(diào)研測試后,對四個文科班的學生試卷按每班人數(shù)進行分層抽樣,對測試成績進行統(tǒng)計,人數(shù)最少的班抽取了人,抽取的所有學生成績分為組:,,,,,,得到如圖所示的頻率分布直方圖,其中第六組分數(shù)段的人數(shù)為人.
()求的值,并求出各班抽取的學生數(shù)各為多少人?
()在抽取的學生中,任取一名學生,求分數(shù)不小于分的概率(視頻率為概率).
()估計高二文科四個班數(shù)學成績的平均分
查看答案和解析>>
科目: 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)在區(qū)間上的值域為,則稱區(qū)間為函數(shù)的一個“倒值區(qū)間”.定義在上的奇函數(shù),當時,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在上的“倒值區(qū)間”;
(Ⅲ)記函數(shù)在整個定義域內(nèi)的“倒值區(qū)間”為,設,則是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個不同的交點?若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負半軸為極軸,與坐標系取相同的長度單位,建立極坐標系.設曲線的極坐標方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(選修4﹣4:坐標系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當圓P的半徑最長時,求|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com