科目: 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項(xiàng)公式;
(3)設(shè)有m項(xiàng)的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項(xiàng)?并求出這些項(xiàng)的和.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分16分)某批發(fā)公司批發(fā)某商品,每件商品進(jìn)價(jià)80元,批發(fā)價(jià)120元,該批發(fā)商為鼓勵(lì)經(jīng)銷商批發(fā),決定當(dāng)一次批發(fā)量超過100個(gè)時(shí),每多批發(fā)一個(gè),批發(fā)的全部商品的單價(jià)就降低0.04元,但最低批發(fā)價(jià)不能低于102元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),每件商品的實(shí)際批發(fā)價(jià)為102元?
(2)當(dāng)一次訂購量為個(gè), 每件商品的實(shí)際批發(fā)價(jià)為元,寫出函數(shù)的表達(dá)式;
(3)根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),經(jīng)銷商一次最大定購量為個(gè),則當(dāng)經(jīng)銷商一次批發(fā)多少個(gè)零件時(shí),該批發(fā)公司可獲得最大利潤(rùn).
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個(gè)最大值和一個(gè)最小值,且當(dāng)時(shí)函數(shù)取得最大值為;當(dāng),函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)是否存在實(shí)數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請(qǐng)說明理由;
(3)若將函數(shù)的圖像保持橫坐標(biāo)不變縱坐標(biāo)變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個(gè)單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某種型號(hào)汽車四個(gè)輪胎半徑相同,均為R=40cm,同側(cè)前后兩輪胎之間的距離(指輪胎中心之間距離)為l=280cm (假定四個(gè)輪胎中心構(gòu)成一個(gè)矩形).當(dāng)該型號(hào)汽車開上一段上坡路ABC(如圖(1)所示,其中∠ABC=a( ),且前輪E已在BC段上時(shí),后輪中心在F位置;若前輪中心到達(dá)G處時(shí),后輪中心在H處(假定該汽車能順利駛上該上坡路).設(shè)前輪中心在E和G處時(shí)與地面的接觸點(diǎn)分別為S和T,且BS=60cm,ST=100cm.(其它因素忽略不計(jì))
(1)如圖(2)所示,F(xiàn)H和GE的延長(zhǎng)線交于點(diǎn)O,求證:OE=40cot (cm);
(2)當(dāng)a= π時(shí),后輪中心從F處移動(dòng)到H處實(shí)際移動(dòng)了多少厘米?(精確到1cm)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰梯形中,,,,,為的中點(diǎn),矩形所在的平面和平面互相垂直.
()求證:平面.
()設(shè)的中點(diǎn)為,求證:平面.
()求三棱錐的體積.(只寫出結(jié)果,不要求計(jì)算過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是函數(shù)的導(dǎo)函數(shù)的圖象,給出下列命題:
①-2是函數(shù)的極值點(diǎn);
②1是函數(shù)的極值點(diǎn);
③的圖象在處切線的斜率小于零;
④函數(shù)在區(qū)間上單調(diào)遞增.
則正確命題的序號(hào)是( )
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的部分圖象,如圖所示.
(1)求函數(shù)的解析式;
(2)若方程在上有兩個(gè)不同的實(shí)根,試求的取值范圍;
(3)若,求出函數(shù)在上的單調(diào)減區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.函數(shù).
(1)請(qǐng)寫出函數(shù)與函數(shù)在的單調(diào)區(qū)間;(只寫結(jié)論,不需證明)
(2)求函數(shù)的最大值和最小值;
(3)討論方程實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知 f(x)= sin2x﹣2sin2x,
(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)若x∈[﹣ , ],求f(x)的最大值及取得最大值時(shí)對(duì)應(yīng)的x的取值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com