科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)y=f(x)與y=F(x)的圖象關(guān)于y軸對稱,當函數(shù)y=f(x)和y=F(x)在區(qū)間[a,b]同時遞增或同時遞減時,把區(qū)間[a,b]叫做函數(shù)y=f(x)的“不動區(qū)間”.若區(qū)間[1,2]為函數(shù)f(x)=|2x﹣t|的“不動區(qū)間”,則實數(shù)t的取值范圍是( )
A.(0,2]
B.[ ,+∞)
C.[ ,2]
D.[ ,2]∪[4,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 的右焦點為F,設(shè)直線l:x=5與x軸的交點為E,過點F且斜率為k的直線l1與橢圓交于A,B兩點,M為線段EF的中點.
(I)若直線l1的傾斜角為 ,求△ABM的面積S的值;
(Ⅱ)過點B作直線BN⊥l于點N,證明:A,M,N三點共線.
查看答案和解析>>
科目: 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大;
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xln(x+1)+( ﹣a)x+2﹣a,a∈R.
(I)當x>0時,求函數(shù)g(x)=f(x)+ln(x+1)+ x的單調(diào)區(qū)間;
(Ⅱ)當a∈Z時,若存在x≥0,使不等式f(x)<0成立,求a的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知的三個頂點,其外接圓為圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)對于線段(包括端點)上的任意一點,若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,求圓的半徑的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,設(shè)為不同的兩點,直線的方程為,設(shè),其中均為實數(shù).下列四個說法中:
①存在實數(shù),使點在直線上;
②若,則過兩點的直線與直線重合;
③若,則直線經(jīng)過線段的中點;
④若,則點在直線的同側(cè),且直線與線段的延長線相交.
所有結(jié)論正確的說法的序號是______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com