科目: 來源: 題型:
【題目】下列說法正確的個數(shù)為: ( )
①是“的充要條件”;
②“”是“”的必要不充分條件;
③“”是“直線與圓相切”的充分不必要條件
④“”是“”既不充分又不必要條件
A. 3 B. 4 C. 1 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)M、N、T是橢圓 上三個點,M、N在直線x=8上的攝影分別為M1、N1 .
(Ⅰ)若直線MN過原點O,直線MT、NT斜率分別為k1 , k2 , 求證k1k2為定值.
(Ⅱ)若M、N不是橢圓長軸的端點,點L坐標為(3,0),△M1N1L與△MNL面積之比為5,求MN中點K的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知常數(shù)λ≥0,設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:a1 = 1,
().
(1)若λ = 0,求數(shù)列{an}的通項公式;
(2)若對一切恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種.若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定a=950.記X為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的離心率為,且過點,過橢圓的左頂點A作直線軸,點M為直線上的動點,點B為橢圓右頂點,直線BM交橢圓C于P
(1)求橢圓C的方程;
(2)求證:;
(3)試問是否為定值?若是定值,請求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某海警基地碼頭O的正東方向40海里處有海礁界碑M,過點M且與OM成(即北偏西)的直線l在在此處的一段為領(lǐng)海與公海的分界線(如圖所示),在碼頭O北偏東方向領(lǐng)海海面上的A處發(fā)現(xiàn)有一艘疑似走私船(可疑船)停留. 基地指揮部決定在測定可疑船的行駛方向后,海警巡邏艇從O處即刻出發(fā),按計算確定方向以可疑船速度的2倍航速前去攔截,假定巡邏艇和可疑船在攔截過程中均未改變航向航速,將在P處恰好截獲可疑船.
(1)如果O和A相距6海里,求可疑船被截獲處的點P的軌跡;
(2)若要確保在領(lǐng)海內(nèi)捕獲可疑船(即P不能在公海上).則、之間的最大距離是多少海里?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱ABC﹣DEF中,側(cè)面ABED是邊長為2的菱形,且∠ABE= ,BC= ,四棱錐F﹣ABED的體積為2,點F在平面ABED內(nèi)的正投影為G,且G在AE上,點M是在線段CF上,且CM= CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M﹣AB﹣F的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足 =logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com