科目: 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點和上的點,滿足, .
(1)當點在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓:的右焦點為,右頂點、上頂點分別為點,
已知橢圓的焦距為,且.
(1)求橢圓的方程;
(2)若過點的直線交橢圓于兩點,當面積取得最大時,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當a=0時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個不同的極值點.
(。┣骯的取值范圍;
(ⅱ)設(shè)兩個極值點分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)等比數(shù)列的前項和為,,且,,成等差數(shù)列,數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,若對任意,不等式 恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點,M是線段AB的中點,過M作x軸的垂線C于點N.
(1)證明:拋物線C在點N處的切線與AB平行;
(2)是否存在實數(shù)k使以AB為直徑的圓M經(jīng)過點N,若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段,垂足為,點在直線上,且,當點在圓上運動時.
(1)求點的軌跡的方程,并指出軌跡.
(2)直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M.證明:直線OM的斜率與直線l的斜率的乘積為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著蘋果6手機的上市,很多消費者覺得價格偏高,尤其是一部分大學生可望而不可及,因此“國美在線”推出無抵押分期付款購買方式,某分期店對最近100位采用分期付款的購買者進行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻 數(shù) | 35 | 25 | a | 10 | b |
已知分3期付款的頻率為0.15,并且店銷售一部蘋果6,顧客分1期付款,其利潤為1千元;分2期或3期付款,其利潤為1.5千元;分4期或5期付款,其利潤為2千元,以頻率作為概率.
(1)求事件A:“購買的3位顧客中,至多有1位分4期付款”的概率;
(2)用X表示銷售一該手機的利潤,求X的分布列及數(shù)學期望E(x)
查看答案和解析>>
科目: 來源: 題型:
【題目】醫(yī)院用甲、乙兩種原料為手術(shù)后的病人配營養(yǎng)餐,甲種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì),售價3元;乙種原料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì),售價2元,若病人每餐至少需要35單位蛋白質(zhì)和40單位鐵質(zhì)。試問:應如何使用甲、乙原料,才能既滿足營養(yǎng),又使費用最省?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com