科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點,求|AB|的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= x2 , g(x)=alnx.
(1)若曲線y=f(x)﹣g(x)在x=1處的切線的方程為6x﹣2y﹣5=0,求實數(shù)a的值;
(2)設(shè)h(x)=f(x)+g(x),若對任意兩個不等的正數(shù)x1 , x2 , 都有 >2恒成立,求實數(shù)a的取值范圍;
(3)若在[1,e]上存在一點x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點P是橢圓C上任一點,點P到直線l1:x=﹣2的距離為d1 , 到點F(﹣1,0)的距離為d2 , 且 = .直線l與橢圓C交于不同兩點A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當A為橢圓與y軸正半軸的交點時,求直線l方程;
(3)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,△ABD是正三角形,△BCD是等腰三角形,∠BCD=120°,EC⊥BD.
(Ⅰ)求證:BE=DE;
(Ⅱ)若AB=2 ,AE=3 ,平面EBD⊥平面ABCD,直線AE與平面ABD所成的角為45°,求二面角B﹣AE﹣D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對某市年齡在35歲的人調(diào)查,隨機選取年齡在35歲的100人進行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認為“支持生二孩與性別有關(guān)”?
支持生二孩 | 不支持生二孩 | 合計 | |
男性 | |||
女性 | |||
合計 |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡單隨機抽樣的方法從這6人中隨機抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計總體,從年齡在35歲人中隨機抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,角A,B,C的對邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點,DB=2,DC=1,求四邊形ABDC面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足f(x+2)= f(x),當x∈[0,2]時,f(x)= ,函數(shù)g(x)=x3+3x2+m.若對任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,則實數(shù)m的取值范圍是( )
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雙曲線C1: 一焦點與拋物線y2=8x的焦點F相同,若拋物線y2=8x的焦點到雙曲線C1的漸近線的距離為1,P為雙曲線左支上一動點,Q(1,3),則|PF|+|PQ|的最小值為( )
A.4
B.4
C.4
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com