科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2(a∈R).
(1)若g(x)= 有三個(gè)極值點(diǎn)x1 , x2 , x,求a的取值范圍;
(2)若f(x)≥﹣ax3+1對(duì)任意x∈[0,1]都恒成立的a的最大值為μ,證明:5 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)D是橢圓C: =1(a>b>0)上一點(diǎn),F(xiàn)1 , F2分別為C的左、右焦點(diǎn),|F1F2|=2 ,∠F1DF2=60°,△F1DF2的面積為
(1)求橢圓C的方程;
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1 , k2 , 當(dāng)k1k2最大時(shí),求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,滿足tanA= .
(1)若A ,求角A;
(2)若a ,試判斷△ABC的形狀.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知公比為q的等比數(shù)列{an}的前6項(xiàng)和S6=21,且4a1 , ,a2成等差數(shù)列.
(1)求an;
(2)設(shè){bn}是首項(xiàng)為2,公差為﹣a1的等差數(shù)列,記{bn}前n項(xiàng)和為Tn , 求Tn的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量 =(cos ,﹣1) =( ),設(shè)函數(shù)f(x)= +1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)=a在區(qū)間[0,π]上有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,對(duì)任意的x1<x2 , 則f(x1)<f(x2)成立的充要條件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)巨著,內(nèi)容極為豐富,其中卷六《均輸》里有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”意思是:“5人分取5錢,各人所得錢數(shù)依次成等差數(shù)列,其中前2人所得錢數(shù)之和與后3人所得錢數(shù)之和相等.”(“錢”是古代的一種重量單位),則其中第二人分得的錢數(shù)是( )
A.
B.1
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時(shí),不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=( )x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[( )t+1 , ( )t]時(shí),求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com