科目: 來源: 題型:
【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時, 取得最大值?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 過點,且離心率為.過點的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點為橢圓的右頂點,探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認(rèn)為共享產(chǎn)品對生活有益 | |||
認(rèn)為共享產(chǎn)品對生活無益 | |||
總計 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
科目: 來源: 題型:
【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù), .
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(3)若,正實數(shù), 滿足,證明: .
查看答案和解析>>
科目: 來源: 題型:
【題目】某市小型機(jī)動車駕照“科二”考試中共有5項考查項目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績進(jìn)行統(tǒng)計(如表所示),并計算從恰有2項成績不合格的學(xué)員中任意抽出2人進(jìn)行補測(只測不合格的項目),求補測項目種類不超過3()項的概率.
(2)“科二”考試中,學(xué)員需繳納150元的報名費,并進(jìn)行1輪測試(按①,②,③,④,⑤的順序進(jìn)行);如果某項目不合格,可免費再進(jìn)行1輪補測;若第1輪補測中仍有不合格的項目,可選擇“是否補考”;若補考則需繳納300元補考費,并獲得最多2輪補測機(jī)會,否則考試結(jié)束;每1輪補測都按①,②,③,④,⑤的順序進(jìn)行,學(xué)員在任何1輪測試或補測中5個項目均合格,方可通過“科二”考試,每人最多只能補考1次,某學(xué)院每輪測試或補考通過①,②,③,④,⑤各項測試的概率依次為,且他遇到“是否補考”的決斷時會選擇補考.
①求該學(xué)員能通過“科二”考試的概率;
②求該學(xué)員繳納的考試費用的數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時, 取得最大值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com