科目: 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點M,使得二面角MACD的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖②所示.
(1)證明:平面ABD⊥平面BCD;
(2)求二面角DABC的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側(cè)).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在各棱長均為2的三棱柱中,側(cè)面底面ABC,.
(1)求側(cè)棱與平面所成角的正弦值的大。
(2)已知點D滿足,在直線上是否存在點P,使DP∥平面?若存在,請確定點P的位置,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點.
(1)證明:直線CE∥平面PAB;
(2)點M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記.
(1)求數(shù)列與數(shù)列的通項公式;
(2)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù),都有;
(3)設(shè)數(shù)列的前項和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BE∥AF,BC∥AD,AF=AB=BC=2,AD=1.
(1)證明:在平面BCE上,一定存在過點C的直線l與直線DF平行;
(2)求二面角FCDA的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在四棱臺ABCDA1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,AB=AA1=2A1B1=2.
(1)若M為CD中點,求證:AM⊥平面AA1B1B;
(2)求直線DD1與平面A1BD所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成的角為45°時,求異面直線OF與BE所成的角的余弦值大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com