相關(guān)習(xí)題
 0  261909  261917  261923  261927  261933  261935  261939  261945  261947  261953  261959  261963  261965  261969  261975  261977  261983  261987  261989  261993  261995  261999  262001  262003  262004  262005  262007  262008  262009  262011  262013  262017  262019  262023  262025  262029  262035  262037  262043  262047  262049  262053  262059  262065  262067  262073  262077  262079  262085  262089  262095  262103  266669 

科目: 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,且橢圓四個(gè)頂點(diǎn)構(gòu)成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點(diǎn),以MN為底邊作等腰三角形,頂點(diǎn)為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.

(1)證明:平面平面

(2)若二面角是直二面角,求異面直線所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某火鍋店為了了解氣溫對(duì)營(yíng)業(yè)額的影響隨機(jī)記錄了該店1月份其中5天的日營(yíng)業(yè)額y(單位:萬元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表:

(1)y關(guān)于x的線性回歸方程x

(2)判斷yx之間是正相關(guān)還是負(fù)相關(guān),若該地1月份某天的最低氣溫為6 ,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額;

(3)設(shè)該地1月份的日最低氣溫XN(μσ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2P(3.8<X13.4).

附:①回歸方程,,=.

3.2,1.8.XN(μ,σ2),P(μσXμσ)=0.682 7,P(μ-2σXμ+2σ)=0.954 5.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知一圓的圓心在直線上,且該圓經(jīng)過兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線與圓相交于兩點(diǎn),試求面積的最大值和此時(shí)直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使的最大值

查看答案和解析>>

科目: 來源: 題型:

【題目】為了探究某市高中理科生在高考志愿中報(bào)考“經(jīng)濟(jì)類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機(jī)抽取50名學(xué)生進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)

(1)據(jù)此樣本,判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為理科生報(bào)考“經(jīng)濟(jì)類”專業(yè)與性別有關(guān)?

(2)若以樣本中各事件的頻率作為概率估計(jì)全市總體考生的報(bào)考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機(jī)抽取3,設(shè)3人中報(bào)考“經(jīng)濟(jì)類”專業(yè)的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布列及數(shù)學(xué)期望

附:

,其中nabcd.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).

(1)假設(shè)生產(chǎn)狀態(tài)正常X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),P(X1)X的數(shù)學(xué)期望;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σμ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

①試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

②下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

經(jīng)計(jì)算得==9.97,s==≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,,16.

用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除﹣3+3之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μσ(精確到0.01).

附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn)F為拋物線C:x2=2py (p>0) 的焦點(diǎn),點(diǎn)A(m,3)在拋物線C上,且|AF|=5,若點(diǎn)P是拋物線C上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P到直線的距離為,設(shè)點(diǎn)P到直線的距離為

(1)求拋物線C的方程;

(2) 求的最小值;

(3)求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】下圖是某市111日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇111日至1112日中的某一天到達(dá)該市,并停留3天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;

(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表:

(1)y關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,當(dāng)價(jià)格x=40/kg時(shí),日需求量y的預(yù)測(cè)值為多少?

參考公式:線性回歸方程,其中,.

查看答案和解析>>

同步練習(xí)冊(cè)答案