科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程為,直線:,直線:.以極點為原點,極軸為軸的正半軸建立平面直角坐標系.
(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點,直線與曲線交于,兩點,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)y=f(x)=-x3+ax2+b(a,b∈R).
(1)當a>0時,若f(x)滿足:y極小值=1,y極大值=,試求f(x)的解析式;
(2)若x∈[0,1]時,y=f(x)圖象上的任意一點處的切線斜率k滿足:|k|≤1,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】求下列各式中x,y的值:
(1)若,則______________;
(2)若,則___________;
(3)若,則____________;
(4)若,則_____________;
(5)若,則________________;
(6)若,則_____________,__________;
(7)若,則_______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)若的圖象在點處的切線方程為,求在區(qū)間[-2,4]上的最大值;
(2)當時,若在區(qū)間(-1,1)上不單調,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在多面體ABCDFE中,四邊形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.
(1)若G點是DC的中點,求證:FG∥平面AED.
(2)求證:平面DAF⊥平面BAF.
(3)若AE=AD=1,AB=2,求三棱錐D-AFC的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)如圖,設直線將坐標平面分成四個區(qū)域(不含邊界),若函數(shù)的圖象恰好位于其中一個區(qū)域內,判斷其所在的區(qū)域并求對應的的取值范圍;
(2)當時,求證:且,有.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點為M,
(1)求過點M且到點P(0,4)的距離為2的直線l的方程;
(2)求過點M且與直線l3:x+3y+1=0平行的直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】世界那么大,我想去看看,每年高考結束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動機強烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個巨大的市場.為了解高中畢業(yè)生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某市的1000名畢業(yè)生進行問卷調查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(1)求所得樣本的中位數(shù)(精確到百元);
(2)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計有多少位同學旅游費用支出在 8100元以上;
(3)已知本數(shù)據(jù)中旅游費用支出在范圍內的8名學生中有5名女生,3名男生, 現(xiàn)想選其中3名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.
附:若,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com