相關(guān)習(xí)題
 0  262471  262479  262485  262489  262495  262497  262501  262507  262509  262515  262521  262525  262527  262531  262537  262539  262545  262549  262551  262555  262557  262561  262563  262565  262566  262567  262569  262570  262571  262573  262575  262579  262581  262585  262587  262591  262597  262599  262605  262609  262611  262615  262621  262627  262629  262635  262639  262641  262647  262651  262657  262665  266669 

科目: 來(lái)源: 題型:

【題目】直線與橢圓交于兩點(diǎn),已知 ,若橢圓的離心率,又經(jīng)過(guò)點(diǎn),為坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)當(dāng)時(shí),試問(wèn):的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線

A.垂直B.平行C.異面D.相交

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)直線的方程為.

(1)求證:不論為何值,直線必過(guò)一定點(diǎn);

(2)若直線分別與軸正半軸,軸正半軸交于點(diǎn),當(dāng)而積最小時(shí),求的周長(zhǎng);

(3)當(dāng)直線在兩坐標(biāo)軸上的截距均為整數(shù)時(shí),求直線的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】A藥店計(jì)劃從甲,乙兩家藥廠選擇一家購(gòu)買100件某種中藥材,為此A藥店從這兩家藥廠提供的100件該種中藥材中隨機(jī)各抽取10件,以抽取的10件中藥材的質(zhì)量(單位:克作為樣本.樣本數(shù)據(jù)的莖葉圖如圖所示.己知A藥店根據(jù)中藥材的質(zhì)量(單位:克)的往定性選擇藥廠

(1)根據(jù)樣本數(shù)據(jù),A藥店應(yīng)選擇哪家藥廠購(gòu)買中藥材?

(2)若將抽取的樣本分布近似看作總體分布,藥店與所選藥廠商定中藥材的購(gòu)買價(jià)格如下表:

每件中藥材的質(zhì)量(單位:克)

購(gòu)買價(jià)格(單位:元/件)

(i)估計(jì)藥店所購(gòu)買的件中藥材的總質(zhì)量;

(ii)若藥店所購(gòu)買的件中藥材的總費(fèi)用不超過(guò)元.求的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是增函數(shù),求實(shí)數(shù)的取值范圍;

2)若函數(shù)上的最小值為3,求實(shí)數(shù)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知是方程的兩根,數(shù)列是遞增的等差數(shù)列,數(shù)列的前項(xiàng)和為,且.

1)求數(shù)列的通項(xiàng)公式;

2)記,求數(shù)列的前.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖四邊形是正方形,平面,平面,

(1)求證:平面平面;

(2)若點(diǎn)為線段中點(diǎn).證明:平面.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】首屆世界低碳經(jīng)濟(jì)大會(huì)近日召開(kāi),本屆大會(huì)的主題為節(jié)能減排,綠色生態(tài)”.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為噸,最多為噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為.

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則需要國(guó)家至少補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】我國(guó)南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書(shū)九章》中,提出了已知三角形三邊長(zhǎng)求三角形的面積的公式,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.若把以上這段文字寫成公式,即,其中ab、c分別為內(nèi)角AB、C的對(duì)邊.,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案