相關(guān)習(xí)題
 0  262547  262555  262561  262565  262571  262573  262577  262583  262585  262591  262597  262601  262603  262607  262613  262615  262621  262625  262627  262631  262633  262637  262639  262641  262642  262643  262645  262646  262647  262649  262651  262655  262657  262661  262663  262667  262673  262675  262681  262685  262687  262691  262697  262703  262705  262711  262715  262717  262723  262727  262733  262741  266669 

科目: 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目: 來源: 題型:

【題目】1)已知,求的定義域并判斷奇偶性.

2)已知奇函數(shù)定義域為R,時,,求解析式.

3)已知函數(shù),求單調(diào)增區(qū)間和減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)是定義在實數(shù)集R上的奇函數(shù),且在區(qū)間上是單調(diào)遞增,若,則的取值范圍為_______

查看答案和解析>>

科目: 來源: 題型:

【題目】經(jīng)統(tǒng)計分析,我市城區(qū)某擁擠路段的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)該路段的車流密度達到180/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20/千米時,車流速度為40千米/小時;當(dāng)時,車流速度v是車流密度x的一次函數(shù).

1)當(dāng)時,求函數(shù)的表達式;

2)當(dāng)車流密度x為多大時,該擁擠路段車流量(單位時間內(nèi)通過該路段某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1/小時).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),關(guān)于x的方程,下列四個結(jié)論中正確的有(

①存在實數(shù)k,使得方程恰有2個不同的實根;

②存在實數(shù)k,使得方程恰有4個不同的實根;

③存在實數(shù)k,使得方程恰有5個不同的實根;

④存在實數(shù)k,使得方程恰有8個不同的實根.

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)滿足:,的最小值為1,且在軸上的截距為4.

(1)求此二次函數(shù)的解析式;

(2)若存在區(qū)間,使得函數(shù)的定義域和值域都是區(qū)間,則稱區(qū)間為函數(shù)不變區(qū)間”.試求函數(shù)的不變區(qū)間;

(3)若對于任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180/平方米,綠化的費用為60/平方米,設(shè)米,建設(shè)工程的總費用為.

1)求關(guān)于的函數(shù)表達式:

2)求停車場面積最大時的值,并求此時的工程總費用.

查看答案和解析>>

科目: 來源: 題型:

【題目】從全校參加科技知識競賽初賽的學(xué)生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:

1)樣本的容量是多少?

2)求樣本中成績在分的學(xué)生人數(shù);

3)從樣本中成績在90.5分以上的同學(xué)中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).

1)當(dāng)時,求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MBx軸交于點C,直線MAy軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案