科目: 來源: 題型:
【題目】(1)已知,求的定義域并判斷奇偶性.
(2)已知奇函數(shù)定義域為R,時,,求解析式.
(3)已知函數(shù),求單調(diào)增區(qū)間和減區(qū)間.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)統(tǒng)計分析,我市城區(qū)某擁擠路段的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)該路段的車流密度達到180輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為40千米/小時;當(dāng)時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達式;
(2)當(dāng)車流密度x為多大時,該擁擠路段車流量(單位時間內(nèi)通過該路段某觀測點的車輛數(shù),單位:輛/小時)可以達到最大,并求出最大值(精確到1輛/小時).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),關(guān)于x的方程,下列四個結(jié)論中正確的有( )
①存在實數(shù)k,使得方程恰有2個不同的實根;
②存在實數(shù)k,使得方程恰有4個不同的實根;
③存在實數(shù)k,使得方程恰有5個不同的實根;
④存在實數(shù)k,使得方程恰有8個不同的實根.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)滿足:,的最小值為1,且在軸上的截距為4.
(1)求此二次函數(shù)的解析式;
(2)若存在區(qū)間,使得函數(shù)的定義域和值域都是區(qū)間,則稱區(qū)間為函數(shù)的“不變區(qū)間”.試求函數(shù)的不變區(qū)間;
(3)若對于任意的,總存在,使得,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180元/平方米,綠化的費用為60元/平方米,設(shè)米,建設(shè)工程的總費用為元.
(1)求關(guān)于的函數(shù)表達式:
(2)求停車場面積最大時的值,并求此時的工程總費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】從全校參加科技知識競賽初賽的學(xué)生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:
(1)樣本的容量是多少?
(2)求樣本中成績在分的學(xué)生人數(shù);
(3)從樣本中成績在90.5分以上的同學(xué)中隨機地抽取2人參加決賽,求最高分甲被抽到的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,求的最大值;
(2)若在區(qū)間上的最大值為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設(shè)點M為橢圓上第一象限內(nèi)一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com